
Fast Item Ranking under Neural Network based Measures
Shulong Tan, Zhixin Zhou, Zhaozhuo Xu, Ping Li

Cognitive Computing Lab

Baidu Research

1195 Bordeaux Dr, Sunnyvale CA, 94089, USA

10900 NE 8th St, Bellevue WA, 98004, USA

{shulongtan,zhixinzhou,v_xuzhaozhuo,liping11}@baidu.com

ABSTRACT
Recently, plenty of neural network based recommendation models

have demonstrated their strength in modeling complicated relation-

ships between heterogeneous objects (i.e., users and items). How-

ever, the applications of these fine trained recommendation models

are limited to the off-line manner or the re-ranking procedure (on

a pre-filtered small subset of items), due to their time-consuming

computations. Fast item ranking under learned neural network

based ranking measures is largely still an open question.

In this paper, we formulate ranking under neural network based

measures as a generic ranking task, Optimal Binary Function Search

(OBFS), which does not make strong assumptions for the ranking

measures. We first analyze limitations of existing fast ranking meth-

ods (e.g., ANN search) and explain why they are not applicable for

OBFS. Further, we propose a flexible graph-based solution for it,

Binary Function Search on Graph (BFSG). It can achieve approxi-

mate optimal efficiently, with accessible conditions. Experiments

demonstrate effectiveness and efficiency of the proposed method,

in fast item ranking under typical neural network based measures.

ACM Reference Format:
Shulong Tan, Zhixin Zhou, Zhaozhuo Xu, Ping Li. 2020. Fast Item Ranking

under Neural Network based Measures. In The Thirteenth ACM International
Conference on Web Search and Data Mining (WSDM ’20), February 3–7, 2020,
Houston, TX, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.

1145/3336191.3371830

1 INTRODUCTION
In recent years, more and more deep learning models are applied

for recommendation and information retrieval systems [30, 43].

Deep neural networks, especially the Siamese network architec-

ture [32], have demonstrated their powerful ability in high-level

abstraction and semantic understanding between heterogeneous

objects. Among these models, there are two main model design

paradigms [43]: (a) representation learning; (b)matching func-
tion learning. Both paradigms are widely adopted in various neu-

ral network basedmatching/rankingmethods. As shown in Figure 1,

the first paradigm learns representations for the two objects (e.g.,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WSDM ’20, February 3–7, 2020, Houston, TX, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6822-3/20/02. . . $15.00

https://doi.org/10.1145/3336191.3371830

Matching Score

Matching Function

Embedding
Representation

(a)

Matching Score

(b)

Learning
Model

Object
Features

Feature
Matching

Learning
Model

Figure 1: Neural network based matching models: (a) repre-
sentation learning; (b) matching function learning.

user and item) via separate models. Then a classical matching func-

tion such as cosine similarity or inner product is chosen to generate

the output score. Different from representation learning, the sec-

ond paradigm combines features or embedding vectors of the two

objects earlier and learns matching functions from labeled data.

The simple matching functions (usually bi-linear or metric func-

tions) adopted in representation learning models often limit the

performance in modeling complicated relationships [28]. While

matching function learning models usually provide more promis-

ing performance in prediction precision because of their powerful

model capacity with non-convex neural network based matching

functions. However, as the computation of neural networks is both

time and resources consuming, the inference process is often done

in an off-line manner, such as generating the recommendation lists

every week instead of on-line generating. This expediencymay hurt

user experience since users’ most recent ratings or posted queries

critically influence user profiles. Another common trick is to build a

two-step service. Firstly, a small subset of items is generated based

on fast and simple filters. Then a re-ranking procedure is conducted

on this subset via fine trained advanced ranking measures [6, 34].

This re-ranking trick restricts the performance since relevant items

may be filtered out in the first step.

To more effectively exploit neural network based matching func-

tions, in this paper we try to speed up the ranking procedure after

the matching functions being learned, referred to as fast neural
ranking. We formulate fast neural ranking as a generic ranking

task, Optimal Binary Function Search (OBFS). We state the

ranking function f here as a generic continuous binary function

and do not further restrict the forms of it. Different from our setting,

traditional Approximate Nearest Neighbor (ANN) search problems,

which can be considered as special cases of fast OBFS, have strong

assumptions for ranking measures. They mainly concentrate on

searching by metric distances, such as ℓ2 distance or angular dis-

tance. Beyond that, a fewworks try to extend the searchingmeasure

https://doi.org/10.1145/3336191.3371830
https://doi.org/10.1145/3336191.3371830
https://doi.org/10.1145/3336191.3371830

to non-metric ones, such as inner product [2, 33, 36, 37, 49], Mer-

cer kernel [8] and Bregman divergence [4]. Note that previous

approaches take the advantages of linearity or convexity of rank-

ing measures. While neural network based ranking measures are

usually nonlinear and non-convex, sometimes asymmetric. To the

best of our knowledge, this is the first work focus on fast ranking

under generic measures, such as neural network based ones.

For approaches, we select search on graph as the basic search-

ing methodology. Search on graph methods show significant su-

periority in searching in metric distances [29] and inner prod-

uct [31, 38, 49] in previous studies. Besides, graph-based index

structures have the flexibility that users can define any (symmetric)

matching function as the similarity measure in graph construction

and searching. Under the definition of OBFS, performing a tradi-

tional search on graph methods can be summarized as a common

methodology: constructing the (approximate) Delaunay graph with

respect to the binary function f for all indexing data and then

greedy searching most relevant vertices on the graph by the same

f , for each query q. Outperforming efficiency of this methodology

on metric distances was previously validated [29]. However, con-

structing or approximately constructing Delaunay graphs for com-

plicated binary functions is extremely difficult. Besides, it requires

the searching function is symmetric (for the two input vectors). It

is difficult to extend it for more generic OBFS problems.

To overcome these limitations, we develop a specific implemen-

tation of Binary Function Search on Graph (BFSG), called Search on
L2 Graph (SL2G). Different from other methods, SL2G constructs

the index graph by ℓ2 distance among searching data, no matter

which searching measure f we are working on. In the searching

phase, SL2G searches by the focus binary function f . This paradigm
bypasses the infeasible task, i.e., constructing Delaunay graphs w.r.t.

complicated measures, and breaks the symmetric limitation. From

the theoretical perspective, SL2G approximates the coordinate de-

scent in Euclidean space. Even if f is non-convex (e.g., deep neural

models), SL2G can reach an approximate local optimum, based on

affordable assumptions. In real applications, we often search on the

graph in multiple paths at the same time. As shown in empirical re-

sults, the global optimum is also not difficult to be achieved by SL2G.

In summary, the contributions of this paper are as below:

• We consider a challenging problem, fast neural ranking and for-

mulate it as a generic ranking task, Optimal Binary Function

Search (OBFS). Under OBFS, more advanced matching measures

can be considered in large-scale search.

• We propose BFSG and a sub-linear solution, SL2G, to tackle the

fast OBFS problem. SL2G breaks the limitations of existing search

on graph methods and is applicable for any complex searching

measures. Theoretical analysis for SL2G is provided.

The organization of this paper is as below: in the next section we

review classical neural network based ranking models and definite

the problem of fast neural ranking formally. Potential solutions

for fast neural ranking are reviewed in Section 3 and we will ex-

plain why these previous methods are inapplicable for complicated

ranking measures. The proposed method, SL2G and its theoretical

analysis are represented in Section 4. In section 5, we study two

neural network based ranking measures and conduct experiments.

The whole paper is concluded in Section 6.

2 FAST NEURAL RANKING
We first review popular neural network based ranking models and

state the motivation of fast neural ranking.

2.1 Neural Ranking Models
In recent years, with the advance of deep learning technology, we

have witnessed a growing body of work in applying shallow or deep

neural networks to the ranking problems (referred to as neural
ranking models) [30], such as Information Retrieval [15, 16, 42]

and recommendation [6, 18]. As analyzed in the above section,

these models are usually based on Siamese architecture and can

be categorized into representation learning methods and matching

function learning methods [43].

Representation learning approaches [19, 35, 44, 47], as shown
in Figure 1 (a), assume the similarity between two heterogeneous

vectors depends on their positions in an unobserved latent space.

Therefore, the goal of representation learning is to find this latent

space as well as two parallel mapping models for each input vec-

tor. Although representation learning models achieve promising

performance in some tasks, researchers found that they are often

incapable of modeling the semantic matching between complicated

objects [28]. Firstly, representing complicated objects with mean-

ingful vectors is difficult. Secondly, simple matching functions like

cosine or inner product cannot capture the complicated interac-

tions between objects, which often in nonlinear and non-convex

manners, such as a user may like very different two categories of

movies. Thus, more and more works focus on learning meaningful

matching functions, especially in forms of deep neural networks.

Matching function learning approaches [15, 28] assume that

there exists a mapping between user and item (or query and docu-

ment). Therefore, the goal of matching function learning is to learn

the mapping by well-designed models. As shown in Figure 1(b),

matching function learning models has flexible feature matching

methods before going through the learning model, which is bene-

ficial for modeling complicated interactions between objects. For

the matching models (i.e., matching functions to be learned), Multi-

Layer Perceptron (MLP) is commonly adopted [9, 18, 34, 39]. Kernel

Pooling is also studied previously [42]. It has been shown, match-

ing function learning methods outperform representation learning

methods in some tasks [43]. However, brute force ranking by these

learned measures is too time-consuming for on-line services. It

motivates us to speed up the neural ranking procedure.

2.2 Problem Definition
Here, we formulate the neural ranking task in a more generic way,

Optimal Binary Function Search (OBFS). It will be shown that

traditional ANN search problems are special cases of OBFS.

Definition 1. (OBFS) Let X and Y be subsets of Euclidean spaces
(possibly with different dimensions), given a data set S = {x1, . . . ,xn } ⊂
X and a continuous binary function, f : X × Y → R, given q ∈ Y ,
OBFS aims to find

arg max

xi ∈S
f (xi ,q). (1)

In the same manner, we aims to find the set of top-k solutions T , with
|T | = k and satisfies

min

x ∈T
f (x ,q) ≥ max

x ′<T
f (x ′,q). (2)

Let us consider X ⊂ Rd and Y ⊂ Rk . Note that we consider

subsets of Euclidean space because some functions’ domain is not

the whole space, for example, cosine is undefined at origin. In the

recommendation framework, we consider items as searching data

in X and the user set as queries in Y . The matching function (i.e.,

the binary function f) is specified or learned, which takes a pair

of item and user as input. The output of f is the ranking score for

recommendation. ℓ2 distance, angular distance and inner product

are special cases of binary functions when d = k .
As introduced above, the efficiency of ranking/searching is also

crucial besides of effectiveness. The brute force scanning method

is often too time-consuming in real applications. So many previous

efforts are paid in finding sub-linear or approximate fast searching

approaches. In the next section, we will explain why previous fast

ranking/searching frameworks are inapplicable for complicated

searching measures, such as fast neural ranking.

3 WHY NOT PREVIOUS METHODS?
In this section, we will explain why previous methods cannot be

extended to generic fast OBFS. Firstly, from the ranking measure

respective, we will review some classical measures which previ-

ously studied and then distinguish the particularity of generic mea-

sures (e.g., neural network based ones). Then, the main fast search

methodologies will be checked whether can be extended for fast

generic ranking. Search on graph will be highlighted at last.

3.1 Previous Studied Ranking Measures
Section 2.2 defines a family of ranking measures, Optimal Binary

Function Search (OBFS), which contains classical ones (e.g., cosine

and inner product) and neural network based measures as special

cases. In this family, measures in metric space are widely studied,

based on which fast or approximate search has been a classical data

science task for decades, often referred as Approximate Nearest

Neighbor (ANN) search or Similarity Search. Two most popular

metric measures are ℓ2 distance and cosine similarity.

Efficient searching beyond metric distances is considered hard.

Only a few simple non-metric measures were studied in the lit-

erature, among which searching by the inner product referred as

Maximum Inner Product Search (MIPS) is popular because of its

wide applicability in recommendation and classification tasks [2,

31, 33, 36, 37, 45, 46]. The Mercer kernels are the extension of inner

product in Hilbert spaceH . Searching by Mercer kernels is often

referred as Max-Kernel Search [7, 8]. Another example is search-

ing by Bregman divergence [4]. For more complicated matching

measures, efficient searching is still an open question.

It is clear that previously studied ranking measures are mainly

symmetric ones, especially metric distances. Bregman divergence

requires a convex ranking function, and both variables must come

from the same convex set. Recall that those representation learning

models (introduced in Section 2.1) mainly choose cosine or inner

product as matching functions. So fast ranking based on these mod-

els can be solved by existing methods. However, neural network

based measures (from matching function learning models) are usu-

ally in forms of Multi-Layer Perceptron (MLP) which are nonlinear

and non-convex. To the best of our knowledge, there is no work

study fast searching via these generic and complicated measures.

3.2 Fast Searching Methodologies
For Approximate Nearest Neighbor (ANN) search paradigms, each

given query is compared with a subset instead of the whole dataset

or comparing by shorter codes, which reduce the time complexity

significantly while promise high searching recalls. To achieve this

purpose, specific index structures are proposed for dense continu-

ous vectors [5, 21] or high dimensional sparse data [3, 25, 26]. For

the dense case, which is our focus in this paper, various searching

methodologies and indexing structures are applied:

• Hashing (Locality-Sensitive Hashing, LSH) [5, 14, 20, 25, 27].

• Quantization (i.e., Product Quantization, PQ) [12, 21, 22, 40].

• Ball tree or KD tree based [4, 7, 8, 11, 33]

• Graph based (i.e., search on graph) [17, 29, 41].

Most of these methodologies are not flexible to extend to ad-

vanced searching measures. For example, one particular LSH algo-

rithm is usually designed for one specific measure, such as SimHash

for cosine similarity [5] and “sign Cauchy projections” for chi-

square similarity [27]. Ball tree-based methods are proposed for

searching by some non-metricmeasures, such asMax-kernel search [7,

8] and searching by Bregman divergence [4]. Thesemethods depend

on a well designed bound corresponding to the particular searching

measure, in telling which sub-tree can be ignored in scanning. How

to design tighter bound is usually very difficult so the searching

efficiency is typically not guaranteed. Besides, it is infeasible to

design bounds for neural network based measures.

One exception is graph-based methods, also referred to as search

on graph. Graph-based index structures have the flexibility that

the user can define any symmetric matching function as similarity

measure in graph construction and searching. Recently, researchers

extend search on graph from metric space to inner product and

achieve promising performance in the MIPS problem [31, 38, 49].

In the next section, we will analyze whether the previous search

on graph methods can be applied for fast neural ranking.

3.3 Search on Graph
Graph structures provide a natural way to partition a high di-

mensional continuous space into discrete regions. Theoretically,

formulation of Voronoi Diagram and its dual graph, Delaunay

Graph [1, 10] provide the foundation for nearest neighbor search

on graph. As specific implementations, k-Nearest Neighbor (kNN)
graph was claimed to be an approximation of Delaunay Graph [17].

Inspired by the small world phenomenon, Navigable Small World

(NSW) network [23] and Hierarchical NSW (HNSW) [29] are intro-

duced and show their powerful potentials in ANN search.

While search on graph methods often claim that there are no

constraints on searchingmeasures (actually must be symmetric) [17,

29], most existing search on graph methods, however, mainly focus

on searching bymetric distances, with a few exceptions, e.g., [29, 31].

The common methodology behind these search on graph methods

can be summarized as: constructing the (approximate) Delaunay

graph with respect to binary function f for all indexing data S
and then greedy searching most relevant vertices on the graph for

each query q by the same f . In constructing approximate Delaunay

graphs, HNSW was shown that it is a proper approximate solution

for Delaunay graph with respect to metric measures [29] and inner

product [31, 38, 49]. However, how to construct the Delaunay graph

algorithmically with respect to complicated f is still unsolved, as it

would be difficult to extend HNSW to complicated binary functions.

For instance, when X and Y are in different dimensions, HNSW has

no clue how to approximate the Delaunay graph. Our experiments

will show that HNSW cannot construct proper Delaunay graphs

with respect to neural network based measures and works badly in

fast neural ranking. To overcome this limitation, we bypass building

Delaunay graphs w.r.t. complicated binary functions and propose

a new search on graph algorithm in the next section, which only

requires to construct Delaunay graphs with respect to ℓ2 distance.

4 BINARY FUNCTION SEARCH ON GRAPH
In this section, we introduce a new graph based solution for generic

OBFS tasks. Before detailing the implementations, we explain why

the proposed method can solve OBFS from a theoretical perspective.

4.1 The Proposed Approach
Generally, our methodology tries to solve the binary function search

problem by graph-based index, which can be summarized as: Bi-
nary Function Search on Graph (BFSG). As analyzed above,

building Delaunay graphs is algorithmically difficult for most of

the binary functions except some easier cases, such as ℓ2 distance.

To bypass constructing Delaunay graphs with respect to compli-

cated binary functions, we proposed a specific method, Search on
L2 Graph (SL2G), for the OBFS problem. The basic idea of SL2G

is: no matter what the given binary function f is, we construct a

Delaunay graph (or an approximate one) with respect to ℓ2 distance

(which is defined on searching data X and independent of queries)

in the indexing step and then perform the greedy search on this

graph by the binary function f in the searching step. SL2G only

constructs Delaunay graphs with respect to ℓ2 distance but inde-

pendent with the focus function f . As building and approximating

Delaunay graph with respect to ℓ2 distance appears in many previ-

ous works, SL2G is applicable for any generic binary functions. If

f is the negative ℓ2 distance as in Example 1, SL2G is equivalent to

the previous search on graph methods, such as HNSW.

In short, the proposed fast ranking framework can be summa-

rized as the following two steps: (i) Constructing an approximate

Delaunay graph with respect to ℓ2 distance. (ii) For query q, per-
forming greedy search on the graph by the focus search measure

fq = f (· ,q). In the next section, we will explain, why the proposed

Sl2G can solve OBFS approximately.

4.2 Theoretical Analysis
Firstly, we definite Voronoi cell and its dual graph, Delaunay graph.

Let S = {x1, . . . ,xn } ⊂ X be the dataset.

Definition 2. The Voronoi cell Ri , for the query space Y , with
respect to f and xi is the set

Ri := {q ∈ Y : f (xi ,q) ≥ f (x j ,q) for all j ∈ [n]}. (3)

Voronoi cells form a diagram of Y . Its dual graph in X , namely

Delaunay graph, is defined as follows.

Definition 3. The Delaunay graph G with respect to f and S is
an undirected graph with vertices S satisfies {xi ,x j } is an edge of G
if and only if the corresponding Voronoi cells satisfy Ri ∩ Rj , ∅.

Thus, two data points in the Delaunay graph will be connected

if their Voronoi cells are “adjacent" to each other. Here, adjacency

means their boundary has a nonempty intersection. It is worth

noting that, the Voronoi diagram is built on Y , while the Delau-
nay graph is constructed with vertices S on X . This generalized
Delaunay graph to any binary function f . As proved in previous

work [31], searching on such Delaunay graph achieves global opti-

mum by greedy search, while its construction and approximation

are difficult in general, especially for complicated f .

Example 1. Let f : Rd × Rd → R be negative ℓ2 distance, i,e.,
f (x ,y) = −∥x − y∥, then the Delaunay graph defined in Definition 3
coincides with classical definition, for instance, the one in [24]. In this
case, Delaunay graph refers to ℓ2-Delaunay graph.

The key factor of SL2G is not only the feasibility of Delaunay

graph building but also the effectiveness in solving the OBFS prob-

lem. We will show that when the (finite) dataset S is sufficiently

dense in the certain region, the performance of greedy search on De-

launay graph is similar to optimizing (1) by “coordinate" descent in

Euclidean space, where the direction “coordinates" are the incident

edges of the data points. The analysis will focus on f with certain

convex assumptions. Generic non-convex f will be demonstrated

empirically in Section 5. Next, Lemma 1 introduces a key property

of Delaunay graph, equivalent to empty sphere criterion [13].

Lemma 1. Let B be an open ball in Rd , x ∈ ∂B (i.e., x is on the
boundary of B), andT := S ∩ B , ∅ (i.e., there exists at least one data
point in ball B), then the Delaunay graph with respect to S connects
x with at least one point in T .

Proof. We consider an internally tangent spheres ∂B′ of ∂B that

has common external intersect at x such that there existsy ∈ S∩∂B′

and S ∩ B′ = ∅. Let z be the center of B′, then the Voronoi cells

Rx of x and Ry of y intersects at z. By Definition 3, x and y are

connected in the ℓ2-Delaunay Graph (see Figure 2(a)). □

Equipped with Lemma 1, we now analyze the conditions under

which SL2G returns local optimum. Our analysis relies on distribu-

tion of the data points. Generally speaking, the dataset needs to be

dense enough on a compact region. We simplify our assumptions

by considering the region [0, 1]d .

Lemma 2. Let p be any density function on [0, 1]d such that
infx ∈[0,1]d p(x) ≥ λ > 0. Let S be i.i.d. samples following density p,

then every d-balls with radius r in [0, 1]d contains at least one data
point with probability at least

1 − λ exp

(
−n

(
r
√
d

)d
+ d log

√
d

r

)
. (4)

Proof. We divide [0, 1]d into d-cubes with diameter r , then the

side lengths of these cubes are l = r/
√
d , so their volumes are

(r/
√
d)d . Hence the probability that a single cube does not contains

any data points is bounded by

λ

(
1 −

(
r
√
d

)d)n
≤ λ exp

(
−n

(
r
√
d

)d)
.

𝑓"#$(𝑎)

𝑓"#$(𝑎∗)

𝑥
𝑟

𝑓"#$((𝑎,∞))

	𝑓"#$(𝑎) 𝑓"#$(𝑎∗)

𝑥

𝑟

𝑓"#$((𝑎,∞))

𝑥

y

𝑧

Boundary of 𝑅1 and 𝑅2

y

y

𝑡

(a) (b) (c)

𝐸 𝐸

𝐵

𝐵′

𝑠

𝑇

𝐵
𝐵

Figure 2: (a) is the schematic diagram for the proof of
Lemma 1. (b) and (c) are for the proof of Theorem 1. (b) is
for the assumptions of the theorem are satisfied. While if
the shape f is strange and the data is not dense enough, the
theorem will not hold as shown in (c). In (c), there are two
data points t and smay take placey and connectwith x . Then
the optimization will stop at x .

The volume of [0, 1]d is 1, so there are (
√
d/r)d such cubes. There-

fore, with probability at least

1 − λ

(√
d

r

)d
exp

(
−n

(
r
√
d

)d)
= 1 − λ exp

(
−n

(
r
√
d

)d
+ d log

√
d

r

)
,

every cube contains at least a data point. In this case, every d-ball
with radius r includes a cube with diameter r , so it also contains a

data point in S . □

For fixed q ∈ Y , we let fq (x) := f (x ,q). We want to show that

search on graph can at least retrieve xi ∈ S around local optimum

of fq . For simplicity, we consider concave fq defined on [0, 1]d .

Theorem 1. Suppose S is generated i.i.d. uniformly from [0, 1]d

and fq be a concave function defined on [0, 1]d . We assume there
exists r > 0 and a∗ < maxx ∈[0,1]d fq (x) such that for every a ≤ a∗,
f −1q (a) is a smooth manifold with radius of curvature at least r for
every point on the manifold. Then with probability no smaller than
the one in (4), the greedy search on the Delaunay graph with respect
to S achieves value at least a∗.

Proof. Consider an x ∈ S such that fq (x) = a ≤ a∗. By the

radius of curvature assumption and convexity of the superlevel set

f −1q ((a,∞)), there exists a r -ball B ⊂ f −1q ((a,∞)) with x ∈ ∂B. See
Figure 2 (b). By Lemma 2, with probability at least p, there exists at
least one point in S belongs B. By Lemma 1, x connects with at least

one point in B, say y. Since y ∈ B ⊂ f −1q ((a,∞)), fq (y) > a = fq (x).
Hence greedy search found a data point with higher evaluation. This

procedure only stops after it achieves a value greater than a∗. □

In Figure 2 (b), suppose the current candidate is x . Since Delaunay
graph has an edge {x ,y} and fq (y) > fq (x), greedy search on graph
will discover y and update y as the new candidate. In the case of

Figure 2 (c), assumption of Theorem 1 is not satisfied. In that figure,

x is only connected to t and s , but fq (t), fq (s) < fq (x), so greedy

search will stop at x . Note that, searching for such a local optimum

only require edges on Delaunay graph with length less than r , so a

complete Delaunay graph is not necessary. This property allows us

to only find short edges of the graph. We can also weaken concavity

of fq to quasi-concavity as long as other assumptions still hold.

Given fixed r and d , as the size of dataset S increases, i.e., n →∞,
the failing probability in (4) converges to 0 exponentially, so the

greedy search succeeds to reach some value close to local optimum

a∗. In an asymptotic setting, i.e., r and d depend on n, it requires

n
(r√

d

)d
→∞ to ensure failing probability converge to 0. In this set-

ting, r ≍
√
d is a natural assumption since diameter of [0, 1]d is

√
d .

4.3 Implementation and Algorithms
In practice, constructing a perfect Delaunay graph (with respect

to any measure) for large-scale high dimensional data is computa-

tionally infeasible. As mentioned in Section 3.3, there are previous

works that tried to construct approximate Delaunay graphs. Tomeet

the efficient searching purpose, the vertex degrees of these graphs

are often restricted to low values, which sacrifices the properties

of the graph. There are no theoretical guarantees that search on

graph methods will return exact optimal results via Delaunay graph

approximations. According to empirical experiments, the effective-

ness of approximate Delaunay graphs with respect to ℓ2 distance

was empirically proven by previous works [17, 29]. However, for

generic binary function f ’s beyond ℓ2 distance, such as asymmetric

f ’s or neural network based f ’s, approximate and efficient Delau-

nay graph constructing is still an open problem. Nevertheless, SL2G

only requires Delaunay graphs with respect to ℓ2 distance, which

breaks through the format constraints of searching measure f .

Algorithm 1 Building Index Graphs for SL2G

1: Input: the data set S , the maximum vertex degreeM , and the

search depth k .
2: Initialize graph G = ∅.
3: for xi ∈ S do
4: A← Search_on_Graph(xi ,G,k,−ℓ2).
5: if |A| ≤ M then
6: Connect xi to vertices in A.
7: else
8: m ← |A|. B ← ∅.
9: Order yj ∈ A in descending order of −ℓ2(xi ,yj).
10: for j = 1 tom do
11: if ∥xi − yj ∥ ≤ minz∈B ∥z − yj ∥ then
12: B ← B ∪ {yj }.

13: if |B | = M then
14: Break.

15: Connect xi to vertices in B.

16: Output: G.

In this paper, we extend the implementation of HNSW [29] (and

SONG [48]) to SL2G, for two reasons: (i) HNSW can approximate

proper Delaunay graph with respect to ℓ2 distance. (ii) HNSW ap-

proximates both Small World graph and Delaunay graph. The long-

range edges of Small World graphs would be helpful in avoiding

local optima, which SL2G may suffer from. The graph construction

algorithm for SL2G is shown in Algorithm 1. The edge selection

method represented in Line 7-15 is from the original HNSWmethod,

which was shown that it improves the performance greatly in the

trade-off of Recall vs. Time. No matter what binary function f
we focus on, SL2G constructs graphs by negative ℓ2 distance. The

greedy search algorithm of SL2G is similar to the original HNSW

Algorithm 2 Search_on_Graph (q,G,k, f)

1: Input: the query element q, the graph G = (V ,E), the search
depth k , and the searching measure f .

2: Randomly choose a vertex p ∈ V . A← {p}.
3: Set p as checked and the rest of vertices as unchecked.

4: while A does not converge do
5: Add unchecked neighbors of vertices in A to A.
6: Set vertices in A as checked.

7: A← top-k elements ofv ∈ A in descending order of f (v,q).

8: Output: A.

but replacing the metric searching measures by the focus binary

function f , which is defined on the user-item pair in searching.

Details for greedy search on graph, for both graph construction

and query searching, can be found in Algorithm 2. Note that, to

simplify the description by pseudo codes, we only use one set A to

store the current best results. In practice, two priority queues will

be used to achieve the same purpose but more efficient.

4.4 From Local Optimum to Global Optimum
As analyzed in theoretical part, SL2G guarantees to reach an ap-

proximate local optimum. But many of generic ranking measures

are non-convex, with multiple local optimums. How to avoid local

optimum and reach the approximate global optimum is challenging.

Fortunately, there are two features will help SL2G to avoid local

optimum. The first one is, in practical implementations, we record

multiple current best candidates but not only one as shown in

Algorithm 2. Based on this setting, multiple searching paths will

be scanned instead of only one path. For example, we now check

the top candidate a in A. Supposed that a is a local optimum and

all its neighbors are worse than a. If we only keep one current best

result, we will stop at a, where is a local optimum. Luckily, we

have multiple candidates in A and the stop condition is whether

A is converged. We will put all unvisited neighbors of a to A and

produce the new best candidate. In the next step, we will keep

checking the new best candidate inA untilA converges. In this way,

the algorithm will not stuck at the local optimum.

The second feature is that HNSWapproximates both SmallWorld

graph and Delaunay graph. The long-range edges of Small World

graphs would be helpful in avoiding local optima. As can be seen

in the experiments, SL2G works well to reach the global optimum.

5 EXPERIMENTS
In this section, we evaluate the performance of SL2G in fast ranking

under generic rankingmeasures. Specifically, we explore two neural

network based ranking measures for the recommendation problem.

Note that the comparison of various recommendation models is

beyond the scope of this paper. We suppose that the neural network

based ranking measures (i.e., f ’s) are pre-trained, and we only focus
on the fast item ranking procedure.

Datasets. For experimental datasets, we choose two widely used

datasets for recommendation:Yelp1 andAmazonMovie (Amovie)2.
For Yelp, we did not further filter it since it was processed before. It

1
https://www.Yelp.com/dataset/challenge

2
http://jmcauley.ucsd.edu/data/amazon

(a) MLP-Concat

… ...

Matching Score

Multi-layer
Perceptron

Embedding
Combination

User Vector Item Vector
(b) MLP-Em-Sum

… ...

Embedding

Combination

Multi-layer
Perceptron

Matching Score

New
Embedding

Figure 3: Two variants of the MLP model for recommenda-
tion. (a) MLP-Concat; (b) MLP-Em-Sum.

contains 25,677 users, 25,815 items and 731,670 ratings. For Amovie,

we filtered the dataset in the way that users with at least 30 inter-

actions are retained. At last Amovie contains 7,748 users, 104,708

items and 746,397 ratings. The item amount in these two datasets

is much bigger than that in others, which is more appropriate for

searching efficiency exploration.

5.1 Neural Network based Ranking Measures
To evaluate the performance of SL2G on neural network based

searching measures, we leverage a state-of-the-art neural network

based recommendationmethod,MLP, whichwas introduced in [18].
The original MLP model concatenates user latent vectors and item

latent vectors before going through the Multi-Layer Perceptron

network (referred as MLP-Concate, Figure 3 (a)). The concatenat-
ing operation is asymmetric. We design one more variant of MLP

with symmetric operations on the input vectors: MLP-Em-Sum
(Figure 3 (b)). MLP-Em-Sum transforms two kinds of vectors into a

common space by an additional embedding layer, before the merge

operation. In this way, user vectors and item vectors will lie on

the same manifold on which element-wise sum will be operated.

After training, we obtain NN models with fixed weights. These

fixed weight models can be considered as binary function f ’s. For
each pair of input vectors, (user, item), the binary function f will

output a real number. These model-based binary functions are re-

ferred as fMLP-Concate and fMLP-Em-Sum. Note that, for both models,

only the networks above the vector combination (i.e., the Multi-

Layer Perceptron networks within dashed boxes shown as Figure 3)

are regarded as the matching function. The part from raw data

to the embedding layer does not belong to the matching function.

For implementation, after weights of each model is learned, we

re-implement and integrate the model-based matching functions

into the searching framework. The dimensions of input vectors for

MLP-Em-Sum are set as 64 and for MLP-Concate are set as 32.

5.2 Baselines
Since this is the first work for fast ranking under neural network

based measures and there are few previous comparable algorithms.

To the best of our knowledge, SL2G is the only formal solution

until now. For baselines, we adopt two state-of-the-art methods for

traditional ANN search: ANNOY3 and HNSW [29]. ANNOY is a

popular open source ANN search project which mainly focuses on

3
https://github.com/spotify/annoy

0 100 200 300 400 500

Speedup over Bruteforce (75.2ms)

0

0.2

0.4

0.6

0.8

1

A
v
g

.
R

e
c
a

ll

Yelp MLP-Concate top-10

SL2G

HNSW

ANNOY

0 100 200 300 400 500

Speedup over Bruteforce (81.4ms)

0

0.2

0.4

0.6

0.8

1
Yelp MLP-Em-Sum top-10

SL2G

HNSW

ANNOY

0 100 200 300 400 500 600

Speedup over Bruteforce (304ms)

0

0.2

0.4

0.6

0.8

1
Amovie MLP-Concate top-10

SL2G

HNSW

ANNOY

0 200 400 600 800

Speedup over Bruteforce (337ms)

0

0.2

0.4

0.6

0.8

1
Amovie MLP-Em-Sum top-10

SL2G

HNSW

ANNOY

0 100 200 300

Speedup over Bruteforce (75.2ms)

0

0.2

0.4

0.6

0.8

1

A
v
g

.
R

e
c
a

ll

Yelp MLP-Concate top-100

SL2G

HNSW

ANNOY

0 100 200 300

Speedup over Bruteforce (81.4ms)

0

0.2

0.4

0.6

0.8

1
Yelp MLP-Em-Sum top-100

SL2G

HNSW

ANNOY

0 100 200 300 400 500

Speedup over Bruteforce (304ms)

0

0.2

0.4

0.6

0.8

1
Amovie MLP-Concate top-100

SL2G

HNSW

ANNOY

0 100 200 300 400 500

Speedup over Bruteforce (337ms)

0

0.2

0.4

0.6

0.8

1
Amovie MLP-Em-Sum top-100

SL2G

HNSW

ANNOY

Figure 4: Experimental results for efficient ranking by neural network based ranking measures. The evaluation method is
Recall vs. Speedup over Bruteforce (i.e., time). The best results are in the upper right corner.

metric measures. For the fast neural ranking task, we first retrieve

candidates by ANNOY via ℓ2 distance (here user vectors and item

vectors are required to be the same dimension) and then re-rank the

candidates by the focus ranking measure f . For HNSW, we adjust it

for complicated binary functions as below: we input a pair of item

vectors to the binary function forcibly as f (x ,x). Then we use this

f (x ,x) as relevance measure to construct the index graph by the

algorithm for HNSW. The graph built like this may be dramatically

different from the Delaunay graph with respect to f (x ,q). So there

is no performance guarantee. Note that we restrict dimensions for

users and items the same for MLP-Concrete as mentioned above. In

this way, HNSW can be implemented. Otherwise, if the dimensions

of users and items are different, f (x ,x) is invalid. Obviously, SL2G
has no such limitations. In the algorithm level, HNSW shares most

of contents with SL2G as represented in Algorithms 1 and 2. But

HNSW uses f to the constructed graph but not negative ℓ2 distance.

5.3 Experimental Settings
To generate evaluating labels, we calculate most relevant items

for each user by the corresponding learned binary function f , i.e.,
fMLP-Concate and fMLP-Em-Sum. Experiments on top-10 and 100 la-

bels are recorded.We do not test recommendation precisions by true

labels, as we focus on searching efficiency of neural ranking tasks.

There are two popular ways to evaluate ANN search algorithms

(or generally OBFS methods): (a) Recall vs. Time; (b) Recall vs.
Computations. Recall vs. Time reports how many times the algo-

rithm can speed up over naive brute force scanning at each recall

level. Recall vs. Computations reports the amount/percentage of

pair-wise computations that the ANN Search algorithm costs at

each recall level. We will show both of these perspectives in the

following experiments for a comprehensive evaluation.

All methods have parameters. ANNOY has one key parameter

which is the number of index trees. SL2G and HNSW have three pa-

rameters:M , kconstruction and k
search

, which control the degrees of

vertices and the number of search attempts. To make a fair compar-

ison, we vary these parameters over a fine grid. For each algorithm

in each experiment, we will have multiple points scattered on the

plane. To plot curves, we first find out the best recall number, max-
recall. Then 100 buckets are produced by splitting the range from 0

tomax-recall evenly. For each bucket, the best result along the other
axis (e.g., the largest times speed up over the brute force method or

the lowest percentage of pair-wise computations) is chosen. If there

are no data points in the bucket, the bucket will be ignored. In this

way, we shall have multiple pairs of data for drawing curves.

All time-related experiments were performed on a 2X 3.00 GHz

8-core i7-5960X CPU server with 32GB memory.

5.4 Experimental Results
Results for Recall vs. Time and Recall vs. Computations are shown

in Figure 4 and Figure 5 respectively. For Recall vs. Time, results for

top-10 and top-100 labels are represented, while for Recall vs. Com-

putations, only results for top-10 are shown due to the limited space.

As can be seen, ANNOY which is designed for metric measures

work badly for the challenging task of fast neural ranking. We will

pay main attention to compare the other two methods, HNSW and

SL2G. Let us first look at the results for the symmetric fMLP-Em-Sum.

As can be seen, HNSW can speed up over the brute force ranking in

some lower recall levels but it works much worse than the proposed

SL2G. SL2G speeds up the searching hundreds of times than brute

force ranking, with high recalls. The reason is that HNSW cannot

approximate proper Delaunay graph with respect to neural network

based measures. For the asymmetric fMLP-Concate, the superiority of

SL2G over HNSW is more significant. We can see that, it is difficult

for HNSW to achieve 80% recalls. The asymmetric characteristic

poses even more challenges for HNSW. Constructing Delaunay

graph with respect to asymmetric binary functions is extremely

hard. But SL2G, which is proposed for generic fast ranking and only

requires to build Delaunay graph with respect to ℓ2 distance, can

overcome the limitations naturally. As can been seen, SL2G works

consistently well both on fMLP-Em-Sum and fMLP-Concate.

As analyzed above, if there are multiple local optimal candidates,

it would be challenging for SL2G. It is the common case for neural

0 0.2 0.4 0.6 0.8 1

Avg. Recall

0

0.1

0.2

0.3

0.4

%
 D

is
ta

n
c
e

 C
o

m
p

u
ta

ti
o

n

Yelp MLP-Concate top-10

SL2G

HNSW

ANNOY

0 0.2 0.4 0.6 0.8 1

Avg. Recall

0

0.1

0.2

0.3

0.4
Yelp MLP-Em-Sum top-10

SL2G

HNSW

ANNOY

0 0.2 0.4 0.6 0.8 1

Avg. Recall

0

0.1

0.2

0.3

0.4

0.5

%
 D

is
ta

n
c
e

 C
o

m
p

u
ta

ti
o

n

Amovie MLP-Concate top-10

SL2G

HNSW

ANNOY

0 0.2 0.4 0.6 0.8 1

Avg. Recall

0

0.1

0.2

0.3
Amovie MLP-Em-Sum top-10

SL2G

HNSW

ANNOY

Figure 5: Experimental results for Recall vs. Computation.
The best results are in the lower right corner.

network based searching measures, such as one person may be

interested in multiple types of movies. But as can be seen, SL2G

does not stop at local optimum and achieves higher recalls easily.

Reasons can be found in Section 4.4.

5.5 Scalability of SL2G
To test the scalability of the proposed method, we evaluate its

performance on a simulation dataset based on Yelp MLP-Concate.

For each data point of Yelp MLP-Concate, we randomly generate 40

simulation data points by Gaussian distribution with the original

data as mean and 0.1 as the standard deviation. In this way we get

a dataset with 1,058,415 data points (including the original ones).

This dataset is referred as Yelp1M MLP-Concate. The results of it

are shown in Figure 6. As can be seen, the proposed method, SL2G,

shows good scalability on this larger dataset. For example, to get

60% top-100 recall, SL2G achieves less than 100 times speedup on

the original smaller dataset, Yelp MLP-Concate. While on this larger

dataset, SL2G is 1887 times faster than brute force ranking. The

two baselines do not show good scalability on this dataset.

0 2000 4000 6000 8000

Speedup over Bruteforce (3.08s)

0

0.2

0.4

0.6

0.8

1

A
v
g

.
R

e
c
a

ll

Yelp1M MLP-Concate top-10

SL2G

HNSW

ANNOY

0 1000 2000 3000 4000 5000

Speedup over Bruteforce (3.08s)

0

0.2

0.4

0.6

0.8

1
Yelp1M MLP-Concate top-100

SL2G

HNSW

ANNOY

Figure 6: Results on the larger dataset Yelp1MMLP Concate.

5.6 Graph Construction Time Analysis
The graph construction for SL2G (with respect to ℓ2 distance com-

putations) is much more efficient than HNSW (with respect to

complicate f computations). The time analysis is listed in Table 1.

Table 1: Graph Construction Time (in seconds) Analysis for
M = 16, kconstruction = 100 and 16 parallel threads.

Datasets Time of HNSW Time of SL2G

Yelp MLP-Concate 50.22 0.24

Yelp MLP-Em-Sum 75.04 0.27

Amovie MLP-Concate 251.89 1.03

Amovie MLP-Em-Sum 285.65 1.28

Yelp1M MLP-Concate 25058.43 64.13

In this experiments, we fix the priority queue size as 100 in graph

construction and set the maximum outgoing degree as 16. On our

server, 16 parallel threads work at the same time to insert nodes.

As shown the construction time of SL2G is much less than HNSW,

more than 200 times faster. For example, for the case of Yelp and

fMLP-EM-Sum, HNSW takes 75.04 seconds to construct the graph

but SL2G only takes 0.27 seconds, 0.36% of the former one.

5.7 Implementation by SONG
To exclude bias from implementation, we also implement SL2G

and HNSW by another search on graph platform, SONG [48]. The

results are shown in Figure 7. Due to the limited space, only results

for Amovie MLP-Concate are shown. Results for other cases have

similar trends. As can be seen, the implementation of SONG is more

efficient, both for SL2G and HNSW, but their priority order keeps

the same. SL2G works much better than HNSW under both two

implementations.

0 100 200 300 400 500 600

Speedup over Bruteforce (304ms)

0

0.2

0.4

0.6

0.8

1
Amovie MLP-Concate top-10

SL2G

SL2G-SONG

HNSW

HNSW-SONG

0 100 200 300 400 500

Speedup over Bruteforce (304ms)

0

0.2

0.4

0.6

0.8

1
Amovie MLP-Concate top-100

SL2G

SL2G-SONG

HNSW

HNSW-SONG

Figure 7: Implementing SL2G and HNSW by SONG [48].

6 CONCLUSION
In this paper, we define a vital task, generic fast ranking, formally

Optimal Binary Function Search (OBFS). A graph-based method-

ology, Binary Function Search on Graph (BFSG), is introduced for

OBFS. Algorithmically, we proposed a specific method, Search on

L2 Graph (SL2G) under BFSG. Approximate ranking by generic rele-

vance measures, such as neural network based ones, can be sped up

significantly by the proposed method. Theoretically, SL2G approxi-

mates coordinate descent in Euclidean space. Even for non-convex

matching measures, SL2G guarantees that at least an approximate

local optimum can be found based on some weak assumptions. In

experiments, two neural networks for recommendation are selected

as the ranking measures to evaluate SL2G. Results show that SL2G

can speed up the searching efficiency hundreds of times, comparing

with the brute force ranking.

REFERENCES
[1] Franz Aurenhammer. 1991. Voronoi diagrams - a survey of a fundamental geo-

metric data structure. ACM Computing Surveys (CSUR) 23, 3 (1991), 345–405.
[2] Yoram Bachrach, Yehuda Finkelstein, Ran Gilad-Bachrach, Liran Katzir, Noam

Koenigstein, Nir Nice, and Ulrich Paquet. 2014. Speeding up the xbox recom-

mender system using a Euclidean transformation for inner-product spaces. In

Eighth ACM Conference on Recommender Systems (RecSys). Foster City, CA, 257–
264.

[3] Andrei Z. Broder. 1997. On the Resemblance and Containment of Documents. In

the Compression and Complexity of Sequences. Positano, Italy, 21–29.
[4] Lawrence Cayton. 2008. Fast nearest neighbor retrieval for bregman divergences.

In Proceedings of the Twenty-Fifth International Conference on Machine learning
(ICML). Helsinki, Finland, 112–119.

[5] Moses S. Charikar. 2002. Similarity estimation techniques from rounding algo-

rithms. In Proceedings on 34th Annual ACM Symposium on Theory of Computing
(STOC). Montreal, Canada, 380–388.

[6] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks

for YouTube Recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems (RecSys). Boston, MA, 191–198.

[7] Ryan R Curtin and Parikshit Ram. 2014. Dual-tree fast exact max-kernel search.

Statistical Analysis and Data Mining: The ASA Data Science Journal 7, 4 (2014),
229–253.

[8] Ryan R Curtin, Parikshit Ram, and Alexander G Gray. 2013. Fast exact max-kernel

search. In Proceedings of the 13th SIAM International Conference on Data Mining
(SDM). Austin,TX, 1–9.

[9] Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and W. Bruce

Croft. 2017. Neural Ranking Models with Weak Supervision. In Proceedings of
the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR). Shinjuku, Tokyo, 65–74.

[10] Steven Fortune. 2004. Voronoi diagrams and Delaunay triangulations. In Hand-
book of Discrete and Computational Geometry, Second Edition. 513–528.

[11] Jerome H. Friedman, F. Baskett, and L. Shustek. 1975. An Algorithm for finding

nearest neighbors. IEEE Trans. Comput. 24 (1975), 1000–1006.
[12] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2013. Optimized Product

Quantization for Approximate Nearest Neighbor Search. In 2013 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). Portland, OR, 2946–2953.

[13] Paul-Louis George and Houman Borouchaki. 1998. Delaunay triangulation and

meshing. (1998).

[14] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in

High Dimensions via Hashing. In Proceedings of 25th International Conference on
Very Large Data Bases (VLDB). Edinburgh, Scotland, UK, 518–529.

[15] Jiafeng Guo, Yixing Fan, Qingyao Ai, andW. Bruce Croft. 2016. A Deep Relevance

MatchingModel for Ad-hoc Retrieval. In Proceedings of the 25th ACM International
Conference on Information and Knowledge Management (CIKM). Indianapolis, IN,
55–64.

[16] Jiafeng Guo, Yixing Fan, Liang Pang, Liu Yang, Qingyao Ai, Hamed Zamani, Chen

Wu, W Bruce Croft, and Xueqi Cheng. 2019. A deep look into neural ranking

models for information retrieval. arXiv preprint arXiv:1903.06902 (2019).
[17] Kiana Hajebi, Yasin Abbasi-Yadkori, Hossein Shahbazi, and Hong Zhang. 2011.

Fast approximate nearest-neighbor search with k-nearest neighbor graph. In

Proceedings of the 22nd International Joint Conference on Artificial Intelligence
(IJCAI), Vol. 22. Barcelona, Spain, 1312.

[18] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th International
Conference on World Wide Web (WWW). Perth, Australia, 173–182.

[19] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry P.

Heck. 2013. Learning deep structured semantic models for web search using

clickthrough data. In 22nd ACM International Conference on Information and
Knowledge Management (CIKM). San Francisco, CA, 2333–2338.

[20] Piotr Indyk and Rajeev Motwani. 1998. Approximate Nearest Neighbors: Towards

Removing the Curse of Dimensionality. In Proceedings of the Thirtieth Annual
ACM Symposium on the Theory of Computing (STOC). Dallas, TX, 604–613.

[21] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. 2008. Hamming Embedding

and Weak Geometric Consistency for Large Scale Image Search. In Proceedings
of the 10th European Conference on Computer Vision (ECCV). Marseille, France,

304–317.

[22] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2011. Product quantization

for nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence 33, 1 (2011), 117–128.

[23] Jon M. Kleinberg. 2000. The small-world phenomenon: an algorithmic perspec-

tive. In Proceedings of the Thirty-Second Annual ACM Symposium on Theory of
Computing (STOC). Portland, OR, 163–170.

[24] Der-Tsai Lee and Bruce J Schachter. 1980. Two algorithms for constructing a

Delaunay triangulation. International Journal of Computer & Information Sciences
9, 3 (1980), 219–242.

[25] Ping Li. 2017. Linearized GMMKernels and Normalized Random Fourier Features.

In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD). Halifax, NS, Canada, 315–324.

[26] Ping Li, Art B Owen, and Cun-Hui Zhang. 2012. One Permutation Hashing.

In Advances in Neural Information Processing Systems (NIPS). Lake Tahoe, NV,
3122–3130.

[27] Ping Li, Gennady Samorodnitsky, and John Hopcroft. 2013. Sign Cauchy Pro-

jections and Chi-Square Kernel. In Advances in Neural Information Processing
Systems (NIPS). Lake Tahoe, NV, 2571–2579.

[28] Zhengdong Lu and Hang Li. 2013. A Deep Architecture for Matching Short Texts.

In Advances in Neural Information Processing Systems (NIPS). Lake Tahoe, NV,
1367–1375.

[29] Yury A Malkov and Dmitry A Yashunin. Early Access. Efficient and robust

approximate nearest neighbor search using hierarchical navigable small world

graphs. IEEE transactions on pattern analysis and machine intelligence (Early
Access).

[30] Bhaskar Mitra and Nick Craswell. 2018. An introduction to neural information

retrieval. Foundations and Trends® in Information Retrieval (2018).
[31] Stanislav Morozov and Artem Babenko. 2018. Non-metric Similarity Graphs for

Maximum Inner Product Search. In Advances in Neural Information Processing
Systems (NeurIPS). Montreal, Canada, 4726–4735.

[32] Jonas Mueller and Aditya Thyagarajan. 2016. Siamese Recurrent Architectures

for Learning Sentence Similarity. In Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence (AAAI). Phoenix, AZ, 2786–2792.

[33] Parikshit Ram and Alexander G. Gray. 2012. Maximum inner-product search

using cone trees. In The 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD). Beijing, China, 931–939.

[34] Aliaksei Severyn and Alessandro Moschitti. 2015. Learning to Rank Short Text

Pairs with Convolutional Deep Neural Networks. In Proceedings of the 38th
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR). Santiago, Chile, 373–382.

[35] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.

Learning semantic representations using convolutional neural networks for

web search. In Proceedings of the 23rd International World Wide Web Conference
(WWW). Seoul, Korea, 373–374.

[36] Anshumali Shrivastava and Ping Li. 2014. Asymmetric LSH (ALSH) for Sublinear

Time Maximum Inner Product Search (MIPS). In Advances in Neural Information
Processing Systems (NIPS). Montreal, Canada, 2321–2329.

[37] Anshumali Shrivastava and Ping Li. 2015. Asymmetric Minwise Hashing for

Indexing Binary Inner Products and Set Containment. In Proceedings of the 24th
International Conference on World Wide Web (WWW). Florence, Italy, 981–991.

[38] Shulong Tan, Zhixin Zhou, Zhaozhuo Xu, and Ping Li. 2019. On Efficient Retrieval

of Top Similarity Vectors. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing (EMNLP). 5235–5245.

[39] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. 2018. Latent Relational Metric

Learning via Memory-based Attention for Collaborative Ranking. In Proceedings
of the 2018 World Wide Web Conference onWorld Wide Web (WWW). Lyon, France,
729–739.

[40] Xiang Wu, Ruiqi Guo, Ananda Theertha Suresh, Sanjiv Kumar, Daniel N.

Holtmann-Rice, David Simcha, and Felix X. Yu. 2017. Multiscale Quantization

for Fast Similarity Search. In Advances in Neural Information Processing Systems
(NIPS). Long Beach, CA, 5745–5755.

[41] Yubao Wu, Ruoming Jin, and Xiang Zhang. 2014. Fast and unified local search for

random walk based k-nearest-neighbor query in large graphs. In International
Conference on Management of Data (SIGMOD). Snowbird, UT, 1139–1150.

[42] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power.

2017. End-to-End Neural Ad-hoc Ranking with Kernel Pooling. In Proceedings
of the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR). Shinjuku, Tokyo, 55–64.

[43] Jun Xu, Xiangnan He, and Hang Li. 2018. Deep Learning for Matching in Search

and Recommendation. In WWW Tutorials.
[44] Hong-Jian Xue, Xin-Yu Dai, Jianbing Zhang, Shujian Huang, and Jiajun Chen.

2017. Deep matrix factorization models for recommender systems. In Proceedings
of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI).
Melbourne, Australia, 3203–3209.

[45] Xiao Yan, Jinfeng Li, Xinyan Dai, Hongzhi Chen, and James Cheng. 2018. Norm-

Ranging LSH for Maximum Inner Product Search. In Advances in Neural Infor-
mation Processing Systems (NeurIPS). Montreal, Canada, 2956–2965.

[46] Hsiang-Fu Yu, Cho-Jui Hsieh, Qi Lei, and Inderjit S Dhillon. 2017. A Greedy

Approach for Budgeted Maximum Inner Product Search. In Advances in Neural
Information Processing Systems (NIPS). Long Beach, CA, 5453–5462.

[47] Hamed Zamani, Mostafa Dehghani, W. Bruce Croft, Erik G. Learned-Miller, and

Jaap Kamps. 2018. From Neural Re-Ranking to Neural Ranking: Learning a Sparse

Representation for Inverted Indexing. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management (CIKM). 497–506.

[48] Weijie Zhao, Shulong Tan, and Ping Li. 2020. SONG: Approximate Nearest Neigh-

bor Search on GPU. In 35th IEEE International Conference on Data Engineering
(ICDE). Dallas, TX.

[49] Zhixin Zhou, Shulong Tan, Zhaozhuo Xu, and Ping Li. 2019. Möbius Transforma-

tion for Fast Inner Product Search on Graph. In Advances in Neural Information
Processing Systems (NeurIPS). Vancouver, Canada.

	Abstract
	1 Introduction
	2 Fast Neural Ranking
	2.1 Neural Ranking Models
	2.2 Problem Definition

	3 Why not Previous Methods?
	3.1 Previous Studied Ranking Measures
	3.2 Fast Searching Methodologies
	3.3 Search on Graph

	4 Binary Function Search on Graph
	4.1 The Proposed Approach
	4.2 Theoretical Analysis
	4.3 Implementation and Algorithms
	4.4 From Local Optimum to Global Optimum

	5 Experiments
	5.1 Neural Network based Ranking Measures
	5.2 Baselines
	5.3 Experimental Settings
	5.4 Experimental Results
	5.5 Scalability of SL2G
	5.6 Graph Construction Time Analysis
	5.7 Implementation by SONG

	6 Conclusion
	References

