
AIBox: CTR Prediction Model Training on a Single Node
Weijie Zhao1, Jingyuan Zhang1, Deping Xie2, Yulei Qian2, Ronglai Jia2, Ping Li1

1Cognitive Computing Lab, Baidu Research USA
2Baidu Search Ads (Phoenix Nest), Baidu Inc.
1195 Bordeaux Dr, Sunnyvale, CA 94089, USA

No.10 Xibeiwang East Road, Beijing, 10085, China
10900 NE 8th St, Bellevue, WA 98004, USA

{weijiezhao,zhangjingyuan03,xiedeping01,qianyulei,jiaronglai,liping11}@baidu.com

ABSTRACT
As one of the major search engines in the world, Baidu’s Sponsored
Search has long adopted the use of deep neural network (DNN)
models for Ads click-through rate (CTR) predictions, as early as in
2013. The input futures used by Baidu’s online advertising system
(a.k.a. “Phoenix Nest”) are extremely high-dimensional (e.g., hun-
dreds or even thousands of billions of features) and also extremely
sparse. The size of the CTR models used by Baidu’s production
system can well exceed 10TB. This imposes tremendous challenges
for training, updating, and using such models in production.

For Baidu’s Ads system, it is obviously important to keep the
model training process highly efficient so that engineers (and re-
searchers) are able to quickly refine and test their new models or
new features. Moreover, as billions of user ads click history entries
are arriving every day, the models have to be re-trained rapidly
because CTR prediction is an extremely time-sensitive task. Baidu’s
current CTR models are trained on MPI (Message Passing Interface)
clusters, which require high fault tolerance and synchronization
that incur expensive communication and computation costs. And,
of course, the maintenance costs for clusters are also substantial.

This paper presents AIBox, a centralized system to train CTR
models with tens-of-terabytes-scale parameters by employing solid-
state drives (SSDs) and GPUs. Due to the memory limitation on
GPUs, we carefully partition the CTR model into two parts: one
is suitable for CPUs and another for GPUs. We further introduce
a bi-level cache management system over SSDs to store the 10TB
parameters while providing low-latency accesses. Extensive experi-
ments on production data reveal the effectiveness of the new system.
AIBox has comparable training performance with a large MPI clus-
ter, while requiring only a small fraction of the cost for the cluster.

CCS CONCEPTS
• Information systems→Online advertising; •Hardware→
Analysis and design of emerging devices and systems.

KEYWORDS
Sponsored Search; GPU Computing; SSD Cache Management

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’19, November 3–7, 2019, Beijing, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6976-3/19/11. . . $15.00
https://doi.org/10.1145/3357384.3358045

ACM Reference Format:
Weijie Zhao, Jingyuan Zhang, Deping Xie, Yulei Qian, Ronglai Jia, and Ping
Li. 2019. AIBox: CTR Prediction Model Training on a Single Node.
In The 28th ACM International Conference on Information and Knowledge
Management (CIKM ’19), November 3–7, 2019, Beijing, China. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3357384.3358045

1 INTRODUCTION
As one of the leading search engines in theworld, Baidu’s Sponsored
Search system (a.k.a. “Phoenix Nest”) [20] has long adopted deep
neural network (DNN) models for ads click-through rate (CTR) pre-
dictions, as early as in 2013. CTR prediction [19, 22] plays a key role
in determining the best ad spaces allocation as it directly influences
user experience and ads profitability. Usually CTR prediction takes
multiple resources as input, e.g., query-ad relevance, ad features
and user portraits. It then estimates the probability that a user clicks
on a given ad. Recently, deep learning has achieved great success in
computer vision [29] and natural language processing [5]. Inspired
by this, learning methods are proposed for the CTR prediction
task [13, 15, 20, 61, 65, 66]. Compared with commonly used logistic
regression [40], deep learning models can substantially improve
the accuracy at a significant increase of training cost.

In the current production system at Baidu Search Ads, The
training process of our model is both resource-intensive and time-
consuming. The models are trained with a parameter server [24, 32]
in an MPI (Message Passing Interface) [52] cluster with hundreds
of CPU-only nodes. The main model used in production is of size
exceeding 10TB and is stored/managed on a special hardware. The
parameter server solution suffers from node faults and network
failures in the hundred-scale nodes environment. What’s worse,
synchronizations in parameter server block the training compu-
tations and incur large network communication overhead, while
asynchronous training frameworks have model convergence prob-
lems caused by the stale models on each worker node [48, 62].

There are fascinating opportunities and challenges to improve
the production system of sponsored search, in many different direc-
tions. One area of active research is to improve the quality of “recalls”
(of ads) before calling the CTR model. For example, Baidu has re-
cently shared such a technical paper [20] to the community, which
was built on top of fast near neighbor search algorithms [55, 64]
and maximum inner product search techniques [51, 56].

In this paper, we present Baidu’s another concurrent major effort
for improving the online advertising system, that is, moving the
CTR model training from MPI clusters to GPUs. While the use of
GPUs for machine learning and scientific computing has been a
common practice, using GPUs for training commercial CTR models

https://doi.org/10.1145/3357384.3358045

still imposes many substantial challenges. The most notable chal-
lenge is that the training data size is of PB (PeteByte) scale and the
trained model is of size exceeding 10TB. The number of training
examples can be as many as hundreds of billions and the number
of features can be thousands of billions (we typically use 264 as a
convenient surrogate for the size of feature space.). The data fed to
the model are also extremely sparse, with merely several hundred
non-zero entries for each feature vector.

As a commercial sponsored search system, any model compres-
sion techniques should not compromise the prediction performance
(revenue). Indeed, even a tiny (e.g., 0.1%) decrease of prediction
accuracy would result in an unacceptable loss of revenue. In fact,
the entire system has been highly optimized with little redundancy
(for example, the parameters have been carefully quantized into
integers). It appears that there is very little room for improvement.

Popularmodel compression techniques such as downsampling [8,
30, 46] and hashing [12, 27, 33, 34, 57] turn out to be less effective
for training commercial CTR models with training data which are
extremely high-dimensional (e.g., hundreds of billions of features)
and extremely sparse (e.g., with only several hundred of non-zero
entries in each feature). Common arguments seen in research pa-
pers, such as “reducing the training cost by half with only a 0.3%
loss of accuracy”, no longer work in this industry. On the other
hand, training DNN CTR models is a daily routine work at Baidu.
Engineers and data scientists have to experiment with many dif-
ferent models/features/strategies/parameters and have to train and
re-train CTR models very frequently. The cost of hardware (such as
MPI clusters) and energy consumption can be highly prohibitive.

To tackle these challenges, we present AIBox, a novel centralized
system to train this huge machine learning model on a single node
efficiently. AIBox employs emerging hardware, SSDs (solid-state
drives) and GPUs, to store the large number of parameters and to ac-
celerate the heavy neural network training computations. As a cen-
tralized system, AIBox directly eliminates those drawbacks caused
by network communications in distributed systems. In addition,
the single node AIBox has orders of magnitudes fewer hardware
failures comparing with thousands of nodes in a large computing
cluster [49]. Furthermore, synchronization costs in a single node
are significantly reduced because only in-memory locks and GPU
on-chip communications are required. There is no data transferring
through network compared with distributed environments.

Nonetheless, there are two major challenges in the design of
AIBox. The first challenge is to store the 10TB-scale model parame-
ters on a single node. The memory price hikes when the capacity
reaches more than 1 TB. It is not scalable when the model becomes
larger in the future and is not practical in mass production for real-
world applications. Due to the high cost, we cannot store the entire
10TB parameters in the main memory. The emerging Non-Volatile
Memory express (NVMe) SSDs on PCIe buses have more than 50X
lower latency than hard drives [60]. We leverage SSDs as a sec-
ondary storage to save the parameters. However, SSDs have two
drawbacks. First, in terms of latency, SSDs are still two orders of
magnitude slower than the main memory, resulting in slow access
and update of parameters in the training process. The other down-
side of SSDs is that storage cells in SSDs only last several thousand
write cycles. Thus, we have to maintain an effective in-memory
cache to hide SSD latencies and reduce disk writings to SSDs.

The second challenge is to employ multiple GPUs on one single
node to accelerate the training computation. Recently, the single-
precision performance of Nvidia Tesla V100 with 32 GB High-
Bandwidth Memory (HBM) [28] achieves 15.7 TFLOPS that is 47X
faster than a top-end server CPU Node (Intel Xeon series) on deep
learning inference [38]. This provides unique opportunities to de-
sign amulti-GPU computing node that has comparable computation
performance to a cluster. However, current off-the-shelf GPUs do
not have TB-scale HBM. We cannot keep the entire CTR prediction
neural network in the GPU HBMs. In this work, we propose a novel
method (Section 2) to partition the neural network into two parts.
The first part is memory-intensive and is trained on CPU. The other
part of the network is computation-intensive while having a lim-
ited number of input features. We train it on GPU. Training data
and model parameters are transferred between the main memory
and the HBM of multi-GPUs. However, communications between
the main memory and the GPU HBM are limited by the PCIe bus
bandwidth. The high GPU numerical computation performance is
blocked when the communication bandwidth becomes the bottle-
neck. The emerging NVLink [21] and NVSwitch [44] techniques
enable direct GPU-to-GPU communication without involving PCIe
buses. We employ NVLink and design an in-HBM parameter server
to reduce GPU data transfers.

In summary, the main contributions of this work are:

• We introduce AIBox, a single node accelerated by SSDs and
GPUs, to train CTR prediction model with 10TB parame-
ters. The single node design paradigm eliminates expensive
network communication and synchronization costs of dis-
tributed systems. As far as we know, AIBox is the first cen-
tralized system designed for real-world machine learning
applications at this large scale.

• We show a novel method that partitions the large CTR pre-
diction model into two parts. After the partition, we are able
to keep the memory-intensive training part on CPU and
utilize memory-limited GPUs for the computation-intensive
part to accelerate the training.

• We propose Sparse Table to reduce SSD I/O latency by stor-
ing model parameters on SSDs and leveraging memory as a
fast cache. Moreover, we implement a 3-stage pipeline that
overlaps the execution of the network, Sparse Table and
CPU-GPU learning stages.

• We conduct extensive experiments to evaluate the proposed
system by comparing it against the distributed cluster so-
lution with 75 nodes on real-world CTR prediction data
consisting of 10 PB examples. It shows the effectiveness of
AIBox—AIBox has comparable training performance with
the cluster solution, while it only requires less than 1/10 of
the cost that we pay for the cluster.

The rest of this paper is organized as follows. Section 2 presents
our CTR prediction neural network model. In Section 3, we intro-
duce the high-level design of AIBox. We investigate the challenges
for the large model storage on Sparse Table and propose solutions
that employ a bi-level cache management system over SSDs in
Section 4. Experimental results are shown in Section 5. Section 6
discusses the related work, and Section 7 concludes the paper.

Concatenate Layer

Embedding Layer

Input Layer

Softmmax Layer

Output Layer

Fully Connected Layers

Embedding Transfer/
Backpropagation

. . .

… …

Embedding Learning on CPU

Joint Learning on GPU

Figure 1: The overview of the designed CTR prediction neu-
ral network model. The nodes at the input layer of the em-
bedding learning represent the high-dimensional sparse fea-
tures. The nodes without incoming arrows at the concate-
nate layer of the joint learning are the dense personalized
input features (in addition to the embeddings).

2 CTR PREDICTION NEURAL NETWORK
The industrial deep networks are designed and trainedwithmassive-
scale data examples to help predict the CTR of an advertisement
accurately, quickly, and reliably. Features in Baidu’s CTR prediction
models are typically extremely sparse features (e.g., hundreds or
even thousands of billions of features), with only a very small num-
ber (e.g., several hundreds) of non-zero values per vector. This huge
DNN model has parameters of size exceeding 10TB, after storing
only the nonzero parameters with careful quantization. Because of
the limited HBM capacity of GPUs, it is clearly impractical to keep
the 10TB parameters of the entire model in the HBM of GPUs.

In this paper, we present the two-module architecture for train-
ing huge DNN CTR models on CPUs+GPUs. The first module fo-
cuses on the embedding learning with high-dimensional & sparse
features and the second module is for joint learning with dense
features resulted from the first module. The embedding learning
is processed on CPUs to help learn low dimensional dense embed-
ding representations. Since the memory-intensive issue of the 10TB
parameters makes it impossible to maintain the entire model in
memory during training, we leverage SSDs to store model parame-
ters. The parameters can be rapidly accessed from SSDs to CPUs.
By transferring the learned embedding vectors from CPUs to GPUs,
the computation-intensive joint learning module can make full use
of the powerful GPUs for CTR prediction. In the joint learning mod-
ule, several fully connected neural networks are modeled by taking
the embeddings as inputs. The last layers of these neural networks
are concatenated together for the final CTR prediction. Figure 1

shows the overview of the designed CTR neural network model.
We introduce the details of the model in the following subsections.

For ease of discussion, in the rest of the paper, we will use 1012
(hundred billions) as the dimensionality of the extremely sparse
features in CTRmodels. Readers should keep in mind that the actual
number of features in production system could well exceed 1012.

2.1 Embedding Learning on CPUs
The embedding learning module aims to map the high dimensional
sparse vectors (e.g., 1012 dimensions) into low dimensional dense
representations. As shown in Figure 1, the embedding learning
module includes the input layer of high-dimensional sparse features
and the output embedding layer. ReLU is used as the activation
function. This module is mainly memory-intensive since the 1012
features result in 10TB-scale model parameters and it is infeasible
to load all the parameters in the main memory. In order to learn
embeddings, we store the 10TB parameters into SSDs. Due to the
efficient access speed between SSDs and CPUs, we can easily load
parameters from SSDs and learn embeddings on CPUs.

2.2 Joint Learning on GPUs
After we compute the embeddings on CPUs for high dimensional
sparse features, we transfer the embeddings from CPUs to GPUs for
the CTR prediction process. The input of the joint learning consists
of the dense personalized features and the learned embeddings. The
personalized features are usually drawn from a variety of sources,
including the text of the ad creative, the user personalized behaviors,
and various ad-related metadata. If we directly concatenate these
features and feed them into neural networks, important information
from the personalized features may not be fully explored, resulting
in inaccurate CTR prediction results. Therefore, we design several
deep neural networks and jointly learn meaningful representations
for the final CTR prediction. As shown in Figure 1, the joint learning
module contains several (two in the figure) deep neural networks.
Each network concatenates the learned embeddings and one kind of
personalized information together as the input layer. Then several
fully connected layers are applied to help capture the interaction
of features in an automatic manner. The last hidden layers of these
networks are combined for the softmax layer and the output layer
of the CTR prediction. We use the negative log-likelihood as the
objective function:

L = −
1
|S |

∑
(x,y)∈S

(y logp(x) + (1 − y) log(1 − p(x))) (1)

Here S is the training set and |S | is the size of training examples.
x represents the input features of our CTR prediction model and
y ∈ {0, 1} is the label indicating whether the ad is clicked or not
by a user. p(x) is the output after the softmax layer, denoting the
predicted probability of the data example being clicked.

In order to effectively learn from the previous neural networks,
the representations are extracted from the first and the last hidden
layers and then concatenated with the input layer of the current
neural network for joint learning. Specifically, the first hidden layer
represents a low-level feature learning and extracts the most related
information from the input layer. The last hidden layer shows a
high-level feature learning and detects the most abstract but helpful

CPU

Read examples

Sparse parameter embedding

MEM

Cache management

Key hash index

SSD

Materialized hash table

Sparse Table

GPU

Dense Table pull/push

Feedforward

Backpropagation

HBM

Sparse embedding

Dense Table replica

Transfer
embedding

read/write

push/pull

distributed fille system I/O

push/pull

Figure 2: The architecture of AIBox.

information for the final CTR prediction. We incorporate the most
meaningful low-level and the most powerful high-level information
from previous networks for a more accurate CTR prediction result.

This module is mainly computation-intensive since there aremul-
tiple neural networks. We train this module on GPUs for speed-up.
After one or several rounds of joint learning are done, backpropa-
gation is used to first update the neural network parameters and
transferred embeddings on GPUs. Then the updated embeddings
are returned to update the model parameters on CPUs. In this way,
the two modules work together for the CTR model training.

3 AIBOX SYSTEM OVERVIEW
In this section, we present the AIBox system overview and describe
its main modules from a high-level view. Figure 2 depicts the ar-
chitecture of AIBox. It contains three components, CPU module,
Sparse Table module and GPU module.

CPU module for coordination and embedding learning: The CPU
module coordinates the entire training workflow. First, it reads the
training examples from a distributed file system (e.g., HDFS [7])
through high-speed network and constructs mini-batches for the
following parallel processing. We call the mini-batches a pass. Then
the CPU module computes the feature embedding of the mini-
batches by interacting with the Sparse Table module to obtain the
referenced parameters. After that, the embeddings are transferred
to GPUs for the joint learning part of the neural network. Upon
completion of the joint learning on GPUs, backpropagated gradients
of the joint neural network inside the GPU module are returned to
the CPUmodule. It updates parameters on the CPU side through the
push operation of Sparse Table. In addition to the main workflow,
the CPU module periodically saves the current training snapshots
as checkpoints to the distributed file system for job failure recovery.

Sparse Table: The Sparse Table is a key-value storage system
that stores values (e.g., model weights and click information) of
1012 discrete features on SSDs. These features consume more than
10TB space. A key hash index of the feature-to-file mapping locates
in the memory for the key look-up. Although SSDs have much
lower latency than hard drives, they still cannot catch-up with the
nano-second level memory latency. To deal with this critical issue,
we design an explicit in-memory cache strategy for SSD accesses
to hide the latency. Meanwhile, the cache also acts as a buffer that
avoids frequent writings to SSDs (Section 4).

GPU module for joint learning: The GPU module receives sparse
embeddings transferred from the CPU module and stores them in
the HBMs. Then the embeddings are fed to the dense joint learn-
ing network. The embedding transferring through PCI-E bus and
the joint learning computation on GPU cores are overlapped. We
create a separate CUDA stream [43] for data transferring and an-
other CUDA stream for learning computations. GPU HBMs act as
an on-chip parameter server. The parameters of the dense neural
network are replicated across all GPUs and stored in the on-chip
GPU HBM. For each pass of mini-batches, each GPU computes the
new parameters according to its local copy. After that, all GPUs
in the AIBox perform collective communications to synchronize
parameters via NVLink high-speed interconnections.

RE1 RE2 RE3 RE4 RE5 RE6

Time
CPU + GPU

SSD

Network … ...

RE - Read Examples ST - Sparse Table
EL - Embedding Learning JL - Joint Learning

ST1 ST2 ST3 ST4
… ...

… ...EL
1

JL
1

EL
2

JL
2

Figure 3: The 3-stage pipeline that overlaps executions on
network, SSDs and neural network training (CPUs + GPUs).

3-stage pipeline: The training workflow mainly involves 3 time-
consuming tasks: training example reading, sparse table operators
and neural network training (embedding learning + joint learning).
The 3 tasks correspond to independent hardware resources: net-
work, SSDs and CPUs + GPUs, respectively. As shown in Figure 3,
we build a 3-stage pipeline to hide the latency of those tasks and
maintain a prefetch queue for each stage. Moreover, the prefetching
also hides the communication time between stages. For each stage,
we create a worker thread that takes jobs from the prefetch queue
and feed the corresponding resource. Then the processed results
are pushed into the prefetch queue of the next stage. The thread
for each stage stalls when the prefetch queue of the next stage is
full, i.e., the next stage has already gotten too many unprocessed
jobs. The capacity of the prefetch queue is preset according to the
execution time of each stage. For the RE stage in Figure 3, we do

not have any execution dependency. Therefore, we extract exam-
ples from the distributed file system through network until we
have enough unprocessed examples in the queue for ST. The ST
stage only depends on the RE—the dependency on EL and JL are
eliminated by our cache management system. The ST stage loads
referenced parameters in RE from SSDs. Since it is sufficiently large
for our cache memory to cache the parameters referenced in the
past several passes, we do not need to wait for the completion of EL
and JL. We only have to ensure that the loaded parameters cannot
be removed from the cache before they are consumed by the EL +
JL stage of the corresponding pass. The EL computation depends on
the ST stage because we can only start to compute the embedding
after we load the parameters into the memory. And the JL training
has to wait for the embeddings computed from the EL part. Due
to the data dependency, JL and EL are in one pipeline. AIBox with
multiple high-end GPUs has a comparable computation power as a
distributed cluster with dozens of CPU-only nodes. We can achieve
similar execution time for the training of the neural network model.
Besides, RE is the simplest and fastest stage. Its latency is hidden
in the pipeline. However, comparing with the distributed cluster
solution having all the parameters in memory, the Sparse Table
operations interacting with SSDs are purely overhead. We are re-
quired to optimize ST aggressively to ensure that ST is faster than
EL + JL. In this case, the latency of ST is hidden in the pipeline so
that we can have a comparable training speed. Therefore, we focus
on the design details of the Sparse Table in the following paper.

4 SPARSE TABLE
The Sparse Table aims to store model parameters on SSDs efficiently.
It leverages the memory as a fast cache for SSDs while reducing
SSD I/O and providing low-latency SSD accesses. It consists of two
major components, key hash index and bi-level cache management.

4.1 Key Hash Index
In order to access the parameter file on SSD by feature keys, we
have to store 1012 key-to-file mappings for the 1012 parameters
in the CTR prediction model. Storing each key-to-file mapping as
a 64-bit value pair in the memory requires 1.6 TB = (8 Bytes key
+ 8 Bytes offset on SSD) × 1012, which exceeds the 1 TB memory
budget. We have to carefully design the key hash index and the file
structures on SSDs to reduce the memory footprint.

We introduce a grouping function that maps a key to a group id
such that each group containsm keys in expectation, i.e., group(key)
→ {0, 1, · · · , 1012/m − 1}. Here 1012 keys are partitioned into
1012/m groups. After grouping the keys, we are able to keep the
group-to-file mappings in the memory as the memory consumption
is only 1/m of the original key-to-file mapping. Since the keys are
continuous from 1 to 1012, the дroup function can be easily ob-
tained by uniformly partitioning the key space, e.g., group(key) →
key mod 1012/m. We setm = ⌊BLOCK/(8 + sizeof(value))⌋, where
BLOCK is the I/O unit of SSD and it is determined by the SSD
block size (usually 4096), 8 represents the bytes a key occupies, and
sizeof(value) is the value (model parameters) size in bytes and it is
around 50 bytes in our CTR prediction model.m should never be
set to a value that is less than ⌊BLOCK/(8+ sizeof(value))⌋, since an
SSD access has to fetch BLOCK Bytes from the disk. It is suboptimal

to have a too small m. On the other hand, the greater the m we
choose, the smaller the key hash index memory footprint is. How-
ever, a largem leads to a large group as we have to fetch multiple
pages from SSDs to get one group. Therefore, them value we set is
optimal when the group-to-file mapping occupies acceptable space
in the memory. It is true when the block size is much larger than
the size of the value.

As a trade-off of the memory footprint, the disadvantage of the
grouping strategy is that values in the same group are fetched
from the disk, even though they are not referenced in the cur-
rent mini-batch—I/O bandwidth is wasted. One possible optimiza-
tion is to group features with high co-occurrence together, e.g.,
pre-train a learned hash function [26] to maximize the feature co-
occurrence. This belongs to another research area of vertical parti-
tioning [42, 63], which is beyond the scope of this paper. Besides,
this disadvantage is reduced by the cache management component
where we skip the group reading from the disk for cached keys.

4.2 Bi-level Cache Management
The cache management design is guided by the following two
challenges: access performance and lifespan of SSDs.

First, the memory access latency is in the order of nano-second
while SSD takes microseconds to peek the data because SSD is
about 1,000 times slower than memory. However, the parameters
in CTR are so sparse and skewed that less than 1% of parameters
are referenced in one pass of mini-batches. It provides us with an
opportunity to build an in-memory cache system that keeps the
frequently used “hot parameters” in the limited memory budget.

The second challenge is that the physical property of SSDs only
allows thousands of writes to each storage cell. Parameters are
updated in every iteration of the training. It would significantly
shorten the SSD lifespan if the parameters are promptly updated.
The cache management also acts as a parameter buffer. Buffered
parameters are updated in memory without involving SSD I/O.
They are materialized to SSDs lazily when the buffer reaches its
capacity and the cache replacement policy swaps it out of the cache.

S1

Bloom
Filter s1

s
2

b
1,1

b
1,2

b1,3

k1 v1 k
2

v
2

k
2’

v
2’

k1’ v1’

...

LRU

LFU

MemorySSD

Level 1 Level 2 Separate chaining

S2

...

S3

...

Figure 4: The architecture of the bi-level cachemanagement.

We propose a bi-level cache management to tackle these chal-
lenges (Figure 4). Comparing with classic hash tables that handle
conflicts by chaining with linked lists, our system has an additional
hashing level before the chaining. Moreover, we introduce two sep-
arate linked lists for the chaining to optimize the cache probing
performance. We also attach a Bloom filter for each SSD file to
reduce unnecessary SSD readings. A worker thread runs in the
background to maintain the cache policy, i.e., performing cache
replacement and writing updated parameters back onto SSDs.

The first level, Level 1 in Figure 4, hashes the key group id to a
cache slot si—si = hash1(g_id), where g_id is the group id computed
in the key grouping (д_id = group(key)). Each si has a pointer to
a file in the SSD that stores the serialized model parameters of
all processed keys with hash1(д_id) = si . Because of the extreme
sparsity of our model, many parameters are not touched in the early
stage of the training. It is inefficient to initialize all the parameters
with the default value and save them onto SSDs. For the first time
a key is referenced, we have to read a block of data from SSDs and
it only returns us the default value. With 1012 parameters in our
model, it may generate 1012 unnecessary SSD readings. Therefore,
we perform a lazy parameter initialization, i.e., we do notmaterialize
a parameter until it is referenced by a mini-batch. Besides, we
attach a Bloom filter [9, 41] for each materialized file to filter out
unnecessary disk readings. Bloom filter is a low-memory-footprint
probabilistic data structure that is used to test whether an element
exists in a set. It guarantees there are no false negatives as the tested
element is definitely not a member of the set when the Bloom filter
returns false. In addition, querying Bloom filter is fast and memory-
bandwidth-efficient. Only a constant number of bits are accessed.
The overhead introduced by the Bloom filter is ignorable comparing
with the SSD reading cost. Since we skip probing the SSD file when
the Bloom filter returns false, a Bloom filter presumably reduces
the number of potential key misses in the SSD files.

The hash code in the second level (Level 2 in Figure 4) is com-
puted by hash2(g_id, bucket), where bucket is a tunable parameter
that controls the number of bucket in each cache slot si . We in-
troduce the second level hashing to shorten the chaining length
of linked lists. Probing over linked lists requires iterating through
the linked list until we find the probing key. It may take the length
of the linked list steps in the worst case, while other hash table
operations only take constant time. Therefore, iterating through the
linked list is the most time-consuming step in hash table probing.
The second level hashing separates a long chaining linked list of si
into multiple buckets with short linked lists to reduce the inefficient
iterating. The parameter bucket trades off space for the efficient
probing. The larger the bucket is, the shorter the linked lists we
have in expectation.

For all the key-value pairs hashed to the same bucket in the
second level, we construct two separate linked lists, Least Recent
Used [45] (LRU) list and Least Frequently Used [53] (LFU) list, to
cache those pairs in the memory (Separate chaining in Figure 4).
The LRU list stores parameters that are used in the current pass
of mini-batches. It keeps the recently used key-value pair in the
front of the linked list so that it reduces the iterating steps over the
linked list to locate the data. On the other side, the LFU list acts as a
buffer that contains the candidates for cache replacement. The most
frequently used values locate at the head of the linked list so that
they can be accessed efficiently. While the least frequently used
values are flushed into SSDs and removed from the cache memory.
A worker thread running in the background periodically moves
the data not in the current pass of mini-batches from the LRU list
to the LFU list. The chaining incurs many small linked list node
allocations and deallocations. We maintain a memory pool that
employs the Slab memory allocation mechanism [6] to manage the
creations and deletions of nodes in linked lists.

4.3 Sparse Table Operators

siKey Bloom fillteri

bi,j

LRU & LFU

SSD fille

Move the node to LRU head

Create a default nodeCreate a node

Yes

No

NoYes

No

Yes

Figure 5: The workflow of the Sparse Table pull operator.

The pull operator of Sparse Table takes a collection of keys that
are referenced in a current pass as input and loads the values of
these keys into the memory. Figure 5 illustrates the workflow as
follows. First, we locate cache slots si in the first level of the bi-level
cache management by group ids. The group ids are computed from
the key grouping hash function. Then, we query the Bloom filter of
each located cache slot to test whether those referenced keys may
exist (a key does not exist when it is referenced the first time). For
each key that fails to pass the Bloom filter, we create a linked list
node with default values in the memory and insert the key into the
Bloom filter. For the keys that pass the Bloom filter (they may exist
in the cache or SSD files), we locate the corresponding cache buckets
bi, j on the second layer by their keys and group ids, and iterate
through the two linked lists (LRU and LFU) to find the referenced
keys. It is a cache-hit when the keys are found in the linked lists
since we do not need to visit the SSDs. On the other hand, we have
to read the files on SSDs for the keys that are not located in the
linked lists. With a low probability that is theoretically guaranteed
by the Bloom filter, the referenced keys are not found in the files.
We create a default node and update the corresponding Bloom filter
for each unfound key as what we do for the keys that fail to pass
the Bloom filter. Finally, we move the located/created linked list
nodes to the heads of the LRU list. After the pull operation, the
parameters of all the referenced keys are stored in the memory
cache and they are ready to use.

The push operator of Sparse Table updates model parameters by
a given collection of keys. The update increments the referenced
parameters by a combined value with the learning rate and the
backpropagated gradients. Our workflow (Section 3) ensures that
all parameters of the given keys have already been loaded into the
memory by the pull operator with the same keys. Therefore, we
can locate the values of those parameters through the bi-level cache
management and increment them efficiently without involving data
writing onto SSDs. The disk writing is deferred until the updated
cache nodes are removed from the cache memory. When the cache
memory budget is full, i.e., the length of an LFU list is larger than
a pre-set threshold MAX_LFU, we remove the last FLUSH_STEP
nodes from the LFU list, where FLUSH_STEP is a tunable constant.
Since nodes are sorted by descending frequency in the LFU list,

the last FLUSH_STEP nodes have the least usage frequency. The
removed parameters have to be flushed to SSDs because they are
updated by the past push operations. We locate the files that con-
tain the removed keys by the first level in the cache management
component, read them from SSDs and merge themwith the updated
values into new files.

4.4 File Management
The push Sparse Table operator keeps creating small files on SSDs
while native file systems onmodern operating systems, e.g., ext4 [39]
and XFS [54], are not designed for handling many small files. The
large number of file metadata overwhelms those file systems.

We design a specific light-weight file management system for
this task by taking advantage of the fact that small-file creations
always come in batches. Having the similar design as key grouping,
we group F small files into a large file to create fewer files. In addi-
tion, it fully utilizes the disk bandwidth when grouping a batch of
independent small-file disk writing into a sequential writing. For
each small file, its offset in the large file is saved. The combination
of the offset and the name of the large file acts as the “file name”
of the small file. This combination is maintained in the cache slot
on the first layer of the cache management system. It is updated
when we flush the updates onto SSDs. After we create more and
more new files, some old files that are not referenced by any cache
slots are out-dated. We maintain a reference counter for each large
file in the memory. The counter decreases when a “small file” in
it is updated and references to a new file. We delete the large file
as soon as its counter reaches zero. Moreover, we monitor the disk
usage periodically. We merge the files with low reference count
and delete them when the disk usage is higher than the model
size MAX_REPLICATION times. Here MAX_REPLICATION is com-
puted by SSD capacity ∗ (85%+ overprovisioning)/model size, where
overprovisioning is a reserved storage space for SSDs specified by
manufacturers. In order to maximize SSD lifespans, SSD controllers
employ wear leveling algorithms [11] that require free spaces to
distribute disk writings. The performance of SSDs drops when there
are less than 85% free space [2].

5 EXPERIMENTS
The objective of the experimental evaluation is to investigate the
overall performance, as well as the impact of optimizations, of the
proposed system. Specifically, we target at answering the following
questions in the experiments:

• How does AIBox perform when comparing with the MPI
cluster solution?

• What latency is introduced by the Sparse Table operations?
• Does the 3-stage pipeline hide this latency?
• What is the effect of the proposed bi-level cachemanagement
on execution time?

We conduct experiments on an AIBox with 8 cutting-edge GPUs.
It has server-grade CPUs, 1 TB of memory, and a RAID 0with NVMe
SSDs. For training the baseline models, the nodes in the MPI cluster
are maintained in the same data center and are inter-connected
through a high-speed Ethernet switch. CPUs in the MPI cluster
have similar performance specifications as the CPUs of AIBox.

For the training data of the CTR model, we collect user click
history ads logs from Baidu’s search engine. The size of the training
data is about 10 PB. The average number of non-zero features of
each example is about 500. The trained CTR model is evaluated
over the production environment of our search engine in an A/B
testing manner.

5.1 Performance Evaluation
We evaluate the performance of the proposed AIBox on the training
time and the prediction quality. We take an MPI cluster training
framework on 75 computing nodes as the baseline. The baseline
solution maintains a distributed parameter server that keeps the
entire 10-TB model in the memory across all the nodes.

0 50 100 150 200 250 300

Min-Batches

0.5

1

1.5

2

2.5

R
e

la
ti
v
e

 E
x
c
e

c
u

ti
o

n
 T

im
e

(a)

1 2 3 4 5 6 7 8 9 10

Days

1.0005

1.001

1.0015

1.002

1.0025

1.003

R
e

la
ti
v
e

 T
e

s
t

A
U

C

(b)
Figure 6: Comparison of AIBox and a 75-node cluster, in
terms of their relative performances, i.e., AIBox/MPI: (a)
Training time, (b) CTR prediction AUC.

Figure 6a depicts the cumulative execution time of AIBox relative
to the cluster baseline. The training involves about 300 passes of
mini-batches. The execution of AIBox in the first pass is slow (267%
of the cluster), because the parallelism of our 3-stage pipeline is not
involved in the first pass—the execution is sequential. After 2 passes,
the pipelines of all the 3 stages are filled. As a result, we can observe
that the execution time is reduced significantly after the first several
passes. The fluctuation of the relative cumulative time is caused
by the different training batch sizes of AIBox and cluster solution.
In our legacy cluster-based CTR prediction training framework,
passes are obtained by slicing data on timestamps. Since there are
more queries in working hours, the amount of search data is not
uniformly distributed in one day and the number of examples in a
pass varies a lot in the cluster solution. On the other hand, AIBox
uniformly partitions the training data into passes of min-batch to
make the processing pipeline-friendly. The relative cumulative time
across passes is normalized based on the data of each pass. In the
figure, we show the relative execution time of processing the same
number of training examples. Comparing with 75 nodes, AIBox
completes the training within a comparable time frame—25% more
than the cluster solution. However, the hardware and maintenance
cost of AIBox is less than 10% of the cluster cost.

For the prediction quality evaluation, we use the Area Under the
Curve [25] (AUC) to measure the quality of the models. Figure 6b
shows the AUC of AIBox relative to the cluster. The AUCs of both
trained models are tested online for 10 days in the real sponsored
search production environment. Since the CTR prediction accuracy
is crucial to the revenue, we have to ensure the optimization on AI-
Box does not lose accuracy. We observe in Figure 6b that AIBox has

0 50 100 150 200 250
0E+0

2E+7

4E+7

6E+7

8E+7
ssd cache

#pass

A
cc

es
s

co
un

t

(a)

0 50 100 150 200 250
0%

20%

40%

60%

80%

100%

#pass

M
em

or
y

ca
he

 h
it

 r
at

e

(b)

0 50 100 150 200 250
0.0E+0

4.0E+6

8.0E+6

1.2E+7

#pass

B
lo

om
 fil

lt
er

 p
ru

ni
ng

(c)

Figure 7: (a) Cache and SSD accesses, (b) Cache hit ratio, and (c) Bloom filter pruning times.

even slightly better AUC than the cluster. This could be just due to
the inherent randomness in the experiments, but it might also true
in general that AIBoxmay produce slightly more accurate models. A
plausible reason is that the model training on a single node relies on
fewer stale parameters than the case on the distributed parameter
server. The single-node design of AIBox synchronizes the param-
eters more frequently by performing a collective communication
across GPUs at the end of every pass.

5.2 Optimization Effects
In this subsection, we investigate the effects of the proposed opti-
mizations: 3-stage pipeline and bi-level cache management.

Stage Avg time STD DEV
RE 65% 14%
ST 78% 15%

EL+JL 92%(66% + 26%) 11%(8% + 3%)
Table 1: Relative execution time of each stage in the pipeline.
100% is the average time of training a pass of mini-batch.

We first analyze the proposed pipeline. Table 1 presents the
relative execution time of each stage in the pipeline. 100% corre-
sponds to the AIBox’s average execution time of training one pass
of mini-batch. The stage EL + JL takes 92% time of a pass. It domi-
nates the entire pipeline training time. The rest 8% time out of the
pipeline is the memory communication and processing overhead.
The latencies of RE (65%) and ST (78%) stages are hidden in the
pipeline.

Then we evaluate the bi-level cache management. Figure 7a
illustrates the number of access counts on cache and SSD, and
the cache hit rate is shown in Figure 7b. SSD access count drops
after several passes because the “hot parameters” are identified and
stored in the LFU list in the cache. The cache hit rate goes to about
80% at the 100th pass and then converges to about 85%. It confirms
that the proposed bi-level cache management significantly reduces
SSD I/Os.

We finally investigate the Bloom filter pruning. The Bloom fil-
ter in our cache system aims at reducing unnecessary SSD read-
ings. Figure 7c demonstrates the Bloom filter pruning times in the
cache management. We skip the SSD probing when the Bloom
filter returns false. As illustrated in the figure, after 50 passes of

mini-batches, the Bloom filter prunes out more than 1 million SSD
readings per pass. The number of Bloom filter pruning remains
around 4 million after 150 passes of mini-batches. The Bloom filter
helps us eliminate millions of SSD readings per pass.

5.3 Discussion
Based on the results presented above, we can answer the questions
driving the experimental evaluation. AIBox has comparable train-
ing time (125%) with the 75-node MPI cluster solution while only
costs less than 10%. Furthermore, the AUC of the model trained
by AIBox is even slightly better possibly because more parameter
synchronizations are performed in the single-node architecture of
AIBox than the distributed parameter server in the cluster solution.
The neural network training of EL + JL dominates the execution
time of the pipeline so that the latency of the Sparse Table opera-
tions is hidden in the 3-stage pipeline. Besides, the proposed bi-level
cache management also avoids the bottleneck of the Sparse Table
operations. By identifying the“hot parameters” and keeping them
in the memory, the average cache hit rate is about 80% with our
cache policy.

6 RELATEDWORK
In this section, we discuss relevant work including CTR prediction
models, in-memory cache management systems, and key-value
stores on SSDs.

CTR prediction model: Inspired by the success of deep neural
networks in computer vision [29] and natural language process-
ing [5], many deep learning methods [13, 15, 35, 59, 61, 66] are
proposed to deal with the large-scale sparse features for CTR. For
example, Deep Crossing [50], Wide&Deep Learning [13], YouTube
Recommendation CTRmodel [15] and Deep Interest Network (DIN)
[66] are introduced as a class of deep neural networks with sev-
eral hidden layers. These models first employ an embedding layer
to learn low-dimensional dense representations from the sparse
inputs and then impose specially designed fully connected layers
to capture the latent interactions among features. Product-based
Neural Network (PNN) [47] uses a product layer on top of the em-
bedding layer to capture high-order feature interactions. DeepFM
[23] and xDeepFM [35] considers factorization machines (FM) to
model both low-order and high-order feature interactions for better
CTR performance. Overall, all of these models combine an embed-
ding layer and several fully connected layers to learn meaningful
representations for CTR prediction. They greatly reduce the feature

engineering jobs and enhance the mode capability. In this paper, we
follow this kind of model structure to design AIBox. Furthermore,
in order to employ GPUs to accelerate the training, we partition our
model into two parts, the memory-intensive embedding learning
on CPU and the computation-intensive joint learning on GPU.

In-memory cache management: Many caching policies have been
developed for storage systems, such as the LRU-K [45], DBMIN [14],
LRFU [31], and Semantic Caching [16]. These algorithms evict cache
according to a combined weight of recently used time-stamp and
frequency. In the web context, there is extensive work developed
for variable-size objects. Some of the most well-known algorithms
include Lowest-Latency-First [58], LRU-Threshold [1], and Greedy-
Dual-Size [10]. Different from our caching problem, the size of
parameters in our CTR prediction model is fixed and there is a clear
access pattern during the training, i.e., some parameters are fre-
quently referenced. It is effective to keep those “hot parameters” in
the cache by applying an LFU eviction policy. While our additional
LRU linked list maintains the parameters referenced in the current
pass to accelerate the hash table probing.

Key-value store for SSDs: There is a significant amount of work
on key-value stores for SSD devices. The major designs [4, 36]
follow the paradigm that maintains an in-memory hash table and
constructs an append-only LSM-tree-like data structure on the SSD
for updates. FlashStore [17] optimizes the hash function for the
in-memory index to compact key memory footprints. SkimpyS-
tash [18] moves the key-value pointers in the hash table onto the
SSD. BufferHash [3] builds multiple hash tables with Bloom filters
for hash table selection. WiscKey [37] separates keys and values
to minimize read/write amplifications. Our Sparse Table design
follows the mainstream paradigm, while it is specialized for our
training problem.We do not need to confront the challenges to store
general keys and values. One reason is that the keys we store are the
index of parameters that distributes uniformly. It is unnecessary to
employ any sophisticated hashing functions. In addition, the values
have a known fixed length and the serialized bucket on SSD exactly
fits in a physical SSD block. In this way, the I/O amplification is
minimized. Instead of tackling general key-value store challenges,
our Sparse Table maintains a bi-level hashing mechanism so that it
is more cache-friendly.

7 CONCLUDING REMARKS
Since 2013, Baidu Search Ads (a.k.a. “Phoenix Nest”) has been using
deep learning CTR models as the standard production tool [20].
While in a way, building CTR models appear to be a matured tech-
nology, there are still many possible directions for improving indus-
trial CTRmodels. One exciting direction is to integrate approximate
near neighbor (ANN) search and maximum inner product search
(MIPS) technique into the pipeline of sponsored ads production sys-
tem [20]. This paper is about another fascinating direction: moving
the CTR model training from CPUs to GPUs.

In this paper, we introduce AIBox that is capable of training a
CTR prediction model with over 10TB parameters on a single node
with SSDs and GPUs. We show a novel method that partitions the
large CTR prediction model into two parts. With the neural network
partitioning, we keep the memory-intensive training part on CPUs
and utilize memory-limited GPUs for the computation-intensive

part to accelerate the training. In addition, we propose Sparse Table
to store model parameters on SSDs. In order to reduce SSD I/O
latency, we leverage memory as a fast cache. Furthermore, a 3-stage
pipeline that overlaps the execution of network, Sparse Table and
the CPU-GPU learning is implemented to hide the latency of Sparse
Table operations. We evaluate AIBox by comparing it against the
standard MPI distributed cluster solution using production data.
The results reveal the effectiveness of AIBox in that it achieves sub-
stantially better price-performance ratio than the cluster solution
while preserving a comparable training speed.

ACKNOWLEDGEMENT
We thank the anonymous reviewers of KDD 2019 and CIKM 2019,
for their helpful comments.

REFERENCES
[1] Marc Abrams, Charles R Standridge, Ghaleb Abdulla, Stephen Williams, and

Edward A Fox. 1996. Caching Proxies: Limitations and Potentials. World Wide
Web Journal 1, 1 (1996).

[2] Nitin Agrawal, Vijayan Prabhakaran, TedWobber, John D Davis, Mark S Manasse,
and Rina Panigrahy. 2008. Design Tradeoffs for SSD Performance. In USENIX
Annual Technical Conference (USENIX ATC), Vol. 57.

[3] Ashok Anand, Chitra Muthukrishnan, Steven Kappes, Aditya Akella, and Suman
Nath. 2010. Cheap and Large CAMs for High Performance Data-Intensive Net-
worked Systems.. In Proceedings of the 7th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), Vol. 10. 29–29.

[4] David G Andersen, Jason Franklin, Michael Kaminsky, Amar Phanishayee,
Lawrence Tan, and Vijay Vasudevan. 2009. FAWN: A Fast Array of Wimpy
Nodes. In Proceedings of the ACM SIGOPS 22nd symposium on Operating systems
principles (SIGOPS). 1–14.

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural Ma-
chine Translation by Jointly Learning to Align and Translate. arXiv preprint
arXiv:1409.0473 (2014).

[6] Jeff Bonwick et al. 1994. The Slab Allocator: An Object-Caching Kernel Memory
Allocator. In USENIX Summer, Vol. 16.

[7] Dhruba Borthakur. 2007. The Hadoop Distributed File System: Architecture and
Design. Hadoop Project Website 11, 2007 (2007), 21.

[8] Y-Lan Boureau, Jean Ponce, and Yann LeCun. 2010. A Theoretical Analysis of
Feature Pooling in Visual Recognition. In Proceedings of the 27th International
Conference on Machine Learning (ICML). 111–118.

[9] Andrei Z. Broder andMichael Mitzenmacher. 2003. Survey: Network Applications
of Bloom Filters: A Survey. Internet Mathematics 1, 4, 485–509.

[10] Pei Cao and Sandy Irani. 1997. Cost-Aware WWW Proxy Caching Algorithms.
In USENIX Symposium on Internet Technologies and Systems (USITS), Vol. 12.
193–206.

[11] Li-Pin Chang. 2007. On Efficient Wear Leveling for Large-Scale Flash-Memory
Storage Systems. In Proceedings of the 2007 ACM Symposium onApplied Computing
(SAC). 1126–1130.

[12] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and Yixin Chen.
2015. Compressing Neural Networks with the Hashing Trick. In Proceedings of
the 32nd International Conference on Machine Learning (ICML). 2285–2294.

[13] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & Deep Learning for Recommender Systems. In Proceedings of the 1st
Workshop on Deep Learning for Recommender Systems (RecSys). 7–10.

[14] Hong-Tai Chou and David J DeWitt. 1986. An Evaluation of Buffer Management
Strategies for Relational Database Systems. Algorithmica 1, 1-4 (1986), 311–336.

[15] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks
for Youtube Recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems (RecSys). 191–198.

[16] Shaul Dar, Michael J Franklin, Bjorn T Jonsson, Divesh Srivastava, Michael Tan,
et al. 1996. Semantic Data Caching and Replacement. In Proceedings of 22th
International Conference on Very Large Data Bases (VLDB), Vol. 96. 330–341.

[17] Biplob Debnath, Sudipta Sengupta, and Jin Li. 2010. FlashStore: High Throughput
Persistent Key-Value Store. Proceedings of the VLDB Endowment 3, 1-2 (2010),
1414–1425.

[18] Biplob Debnath, Sudipta Sengupta, and Jin Li. 2011. SkimpyStash: RAM Space
Skimpy Key-Value Store on Flash-based Storage. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of Data (SIGMOD). 25–36.

[19] Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz. 2007. Internet
Advertising and the Generalized Second-Price Auction: Selling Billions of Dollars

Worth of Keywords. American Economic Review 97, 1 (2007), 242–259.
[20] Miao Fan, Jiacheng Guo, Shuai Zhu, Shuo Miao, Mingming Sun, and Ping Li. 2019.

MOBIUS: Towards the Next Generation of Query-Ad Matching in Baidu’s Spon-
sored Search. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (KDD). 2509–2517.

[21] Denis Foley and John Danskin. 2017. Ultra-Performance Pascal GPU and NVLink
Interconnect. IEEE Micro 37, 2 (2017), 7–17.

[22] Thore Graepel, Joaquin Quinonero Candela, Thomas Borchert, and Ralf Her-
brich. 2010. Web-Scale Bayesian Click-Through Rate Prediction for Sponsored
Search Advertising in Microsoft’s Bing Search Engine. In Proceedings of the 27th
International Conference on Machine Learning (ICML). 13–20.

[23] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: a Factorization-Machine based Neural Network for CTR Prediction.
In Proceedings of the 26th International Joint Conference on Artificial Intelligence
(IJCAI). 1725–1731.

[24] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B
Gibbons, Garth A Gibson, Greg Ganger, and Eric P Xing. 2013. More Effective
Distributed ML via a Stale Synchronous Parallel Parameter Server. In Advances
in Neural Information Processing Systems (NIPS). 1223–1231.

[25] Jin Huang and Charles X Ling. 2005. Using AUC and Accuracy in Evaluating
Learning Algorithms. IEEE Transactions on Knowledge and Data Engineering 17,
3 (2005), 299–310.

[26] Stratos Idreos, Niv Dayan, Wilson Qin, Mali Akmanalp, Sophie Hilgard, Andrew
Ross, James Lennon, Varun Jain, Harshita Gupta, David Li, et al. [n. d.]. Design
Continuums and the Path Toward Self-Designing Key-Value Stores that Know
and Learn. In Biennial Conference on Innovative Data Systems Research (CIDR).

[27] Qing-Yuan Jiang andWu-Jun Li. 2017. Deep Cross-Modal Hashing. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 3232–
3240.

[28] Stephen W Keckler, William J Dally, Brucek Khailany, Michael Garland, and
David Glasco. 2011. GPUs and the Future of Parallel Computing. IEEE Micro 5
(2011), 7–17.

[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet Clas-
sification with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems (NIPS). 1097–1105.

[30] Jason Kuen, Xiangfei Kong, Zhe Lin, Gang Wang, Jianxiong Yin, Simon See, and
Yap-Peng Tan. 2018. Stochastic Downsampling for Cost-Adjustable Inference
and Improved Regularization in Convolutional Networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 7929–7938.

[31] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H Noh, Sang Lyul Min, Yookun
Cho, and Chong Sang Kim. 2001. LRFU: A Spectrum of Policies that Subsumes
the Least Recently Used and Least Frequently Used Policies. IEEE Trans. Comput.
12 (2001), 1352–1361.

[32] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. 2014. Scaling Dis-
tributedMachine Learning with the Parameter Server. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), Vol. 14. 583–598.

[33] Ping Li, Art B Owen, and Cun-Hui Zhang. 2012. One Permutation Hashing. In
Advances in Neural Information Processing Systems (NIPS). 3122–3130.

[34] Ping Li, Anshumali Shrivastava, Joshua Moore, and Arnd Christian König. 2011.
Hashing Algorithms for Large-Scale Learning. In Advances in Neural Information
Processing Systems (NIPS). 2672–2680.

[35] Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and
Guangzhong Sun. 2018. xDeepFM: Combining Explicit and Implicit Feature
Interactions for Recommender Systems. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (KDD). 1754–
1763.

[36] Hyeontaek Lim, Bin Fan, David G Andersen, and Michael Kaminsky. 2011. SILT:
A Memory-Efficient, High-Performance Key-Value Store. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles (SOSP). 1–13.

[37] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Hariharan Gopalakrishnan,
Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. 2017. WiscKey: Sepa-
rating Keys from Values in SSD-Conscious Storage. ACM Transactions on Storage
(TOS) 13, 1 (2017), 5.

[38] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng, and Jeffrey S
Vetter. 2018. NVIDIA Tensor Core Programmability, Performance & Precision.
arXiv preprint arXiv:1803.04014 (2018).

[39] Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas Dilger, Alex
Tomas, and Laurent Vivier. 2007. The New Ext4 Filesystem: Current Status and
Future Plans. In Proceedings of the Linux Symposium, Vol. 2. 21–33.

[40] H Brendan McMahan, Gary Holt, David Sculley, Michael Young, Dietmar Ebner,
Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, et al. 2013.
Ad Click Prediction: a View from the Trenches. In Proceedings of the 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD).
1222–1230.

[41] Michael Mitzenmacher. 2002. Compressed Bloom Filters. IEEE/ACM Transactions
on Networking (TON) 10, 5 (2002), 604–612.

[42] Shamkant Navathe, Stefano Ceri, Gio Wiederhold, and Jinglie Dou. 1984. Vertical
Partitioning Algorithms for Database Design. ACM Transactions on Database
Systems (TODS) 9, 4 (1984), 680–710.

[43] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. 2008. Scalable
Parallel Programming with CUDA. ACM Queue 6, 2, 40–53.

[44] NVIDIA. 2018. NVLink Fabric. https://www.nvidia.com/en-us/data-center/
nvlink. (2018). Accessed: 2019-01-29.

[45] Elizabeth J O’neil, Patrick E O’neil, and Gerhard Weikum. 1993. The LRU-K Page
Replacement Algorithm for Database Disk Buffering. 22, 2 (1993), 297–306.

[46] Alexander D Poularikas. 1998. Handbook of Formulas and Tables for Signal
Processing. CRC press.

[47] Yanru Qu, Han Cai, Kan Ren, Weinan Zhang, Yong Yu, Ying Wen, and Jun Wang.
2016. Product-based Neural Networks for User Response Prediction. In Proceed-
ings of the IEEE 16th International Conference on Data Mining (ICDM). 1149–1154.

[48] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. 2011. Hogwild:
A Lock-Free Approach to Parallelizing Stochastic Gradient Descent. In Advances
in Neural Information Processing Systems (NIPS). 693–701.

[49] Bianca Schroeder and Garth Gibson. 2010. A Large-Scale Study of Failures in
High-Performance Computing Systems. IEEE Transactions on Dependable and
Secure Computing 7, 4 (2010), 337–350.

[50] Ying Shan, T Ryan Hoens, Jian Jiao, Haijing Wang, Dong Yu, and JC Mao. 2016.
Deep crossing: Web-scale Modeling without Manually Crafted Combinatorial
Features. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD). 255–262.

[51] Anshumali Shrivastava and Ping Li. 2014. Asymmetric LSH (ALSH) for Sublinear
Time Maximum Inner Product Search (MIPS). In Advances in Neural Information
Processing Systems (NIPS). 2321–2329.

[52] Marc Snir, Steve Otto, Steven Huss-Lederman, Jack Dongarra, and David Walker.
1998. MPI–the Complete Reference: the MPI Core. Vol. 1. MIT press.

[53] Leonid B Sokolinsky. 2004. LFU-K: An Effective Buffer Management Replace-
ment Algorithm. In International Conference on Database Systems for Advanced
Applications (DASFAA). 670–681.

[54] Adam Sweeney, Doug Doucette, Wei Hu, Curtis Anderson, Mike Nishimoto, and
Geoff Peck. 1996. Scalability in the XFS File System. In USENIX Annual Technical
Conference (USENIX ATC), Vol. 15.

[55] Shulong Tan, Zhixin Zhou, Zhaozhuo Xu, and Ping Li. 2019. Fast Item Ranking
under Neural Network based Measures. Technical Report. Baidu Research.

[56] Shulong Tan, Zhixin Zhou, Zhaozhuo Xu, and Ping Li. 2019. On Efficient Retrieval
of Top Similarity Vectors. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing (EMNLP).

[57] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh
Attenberg. 2009. Feature Hashing for Large Scale Multitask Learning. In Pro-
ceedings of the 26th Annual International Conference on Machine Learning (ICML).
1113–1120.

[58] Roland P Wooster and Marc Abrams. 1997. Proxy Caching that Estimates Page
Load Delays. Computer Networks and ISDN Systems 29, 8 (1997), 977–986.

[59] Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, and Tat-Seng Chua.
2017. Attentional Factorization Machines: Learning the Weight of Feature In-
teractions via Attention Networks. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence (IJCAI). 3119–3125.

[60] Qiumin Xu, Huzefa Siyamwala, Mrinmoy Ghosh, Tameesh Suri, Manu Awasthi,
Zvika Guz, Anahita Shayesteh, and Vijay Balakrishnan. 2015. Performance
Analysis of NVMe SSDs and Their Implication on Real World Databases. In
Proceedings of the 8th ACM International Systems and Storage Conference (SYSTOR).
6:1–6:11.

[61] Shuangfei Zhai, Keng-hao Chang, Ruofei Zhang, and Zhongfei Mark Zhang. 2016.
Deepintent: Learning Attentions for Online Advertising with Recurrent Neural
Networks. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD). 1295–1304.

[62] Shanshan Zhang, Ce Zhang, Zhao You, Rong Zheng, and Bo Xu. 2013. Asyn-
chronous Stochastic Gradient Descent for DNN Training. In Proceedings of 2013
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
6660–6663.

[63] Weijie Zhao, Yu Cheng, and Florin Rusu. 2015. Vertical Partitioning for Query
Processing over Raw Data. In Proceedings of the 27th International Conference on
Scientific and Statistical Database Management (SSDBM). 15:1–15:12.

[64] Weijie Zhao, Shulong Tan, and Ping Li. 2019. SONG: Approximate Nearest Neighbor
Search on GPU. Technical Report. Baidu Research.

[65] Lei Zheng, Vahid Noroozi, and Philip S Yu. 2017. Joint Deep Modeling of Users
and Items Using Reviews for Recommendation. In Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining (WSDM). 425–434.

[66] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, XiaoMa, Yanghui
Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep Interest Network for Click-
Through Rate Prediction. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (KDD). 1059–1068.

https://www.nvidia.com/en-us/data-center/nvlink
https://www.nvidia.com/en-us/data-center/nvlink

	Abstract
	1 Introduction
	2 CTR Prediction Neural Network
	2.1 Embedding Learning on CPUs
	2.2 Joint Learning on GPUs

	3 AIBox System Overview
	4 Sparse Table
	4.1 Key Hash Index
	4.2 Bi-level Cache Management
	4.3 Sparse Table Operators
	4.4 File Management

	5 Experiments
	5.1 Performance Evaluation
	5.2 Optimization Effects
	5.3 Discussion

	6 Related Work
	7 Concluding Remarks
	References

