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Abstract
We present a fast search on graph algorithm for Maximum Inner Product Search
(MIPS). This optimization problem is challenging since traditional Approximate
Nearest Neighbor (ANN) search methods may not perform efficiently in the non-
metric similarity measure. Our proposed method is based on the property that
Möbius transformation introduces an isomorphism between a subgraph of `2-
Delaunay graph and Delaunay graph for inner product. Under this observation,
we propose a simple but novel graph indexing and searching algorithm to find the
optimal solution with the largest inner product with the query. Experiments show
our approach leads to significant improvements compared to existing methods.

1 Introduction

This paper focuses on a discrete optimization problem. Given a large dataset S with high dimensional
vectors and a query point q in Euclidean space, we aim to search for x ∈ S that maximizes the inner
product x>q. Rigorously speaking, we will develop an efficient algorithm for computing

p = argmax
x∈S

x>q. (1)

This so-called Maximum Inner Product Search (MIPS) problem has wide applicability in machine
learning models, such as recommender system [35, 16], natural language processing [5, 33] and multi-
class or multi-label classifier [38, 34], computational advertising for search engines [9], etc. Because
of its importance and popularity, there has been substantial research on effective and efficient MIPS
algorithms. The early work of [27] proposed tree-based methods to solve the MIPS problem. Recently,
there is a line of works in the literature tried to transform MIPS to traditional Approximate Nearest
Neighbor (ANN) search [11, 12, 18] by lifting the base data vectors and query vectors asymmetrically
to higher dimensional space [2, 28, 30, 26, 29, 36]. After the transformation, the well-developed
ANN search methods can then be applied to solve the MIPS problem. There are other proposals
designed for the MIPS task including quantization based methods [15] and graph based methods [25].

In this paper, we will introduce a new graph based MIPS algorithm. Graph based methods have
been well developed for ANN search in metric space and show significant superiority [20, 4, 24, 13].
The recent work [25], namely ip-NSW, attempts to extend the graph based methods for ANN search
to MIPS. The authors introduce the concepts of IP-Delaunay graph, which is the smallest graph
that can guarantee the return of exact solutions for MIPS by greedy search. Practically, ip-NSW
tries to approximate the IP-Delaunay graph via Navigable Small World (NSW) [23] and Hierarchical
Navigable Small World (HNSW) [24]. To improve upon existing methods, we propose a better graph
based method for MIPS, which preserves the advantages of similarity graph in metric space.

Our method is based on Möbius transformation on the dataset, that connects graph based indices for
MIPS and ANN search. We find that under Möbius transformation, there is an isomorphism between
two graphs: (a) IP-Delaunay graph before the transformation. (b) A subgraph of the Delaunay
triangulation w.r.t. `2-norm (`2-Delaunay graph) after the transformation. Based on this observation,
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we approximate IP-Delaunay graph in two steps: (i) map the data points via Möbius transformation;
(ii) approximate `2-Delaunay graph on the transformed data points and one additional point for
the origin. Afterward, given a query point, we perform a greedy search on the obtained graph by
comparing inner product of the query with data points (nodes in the graph) in the original format.

The superiority of our method is two-fold: (a) The `2-distance based graph construction can preserve
all advantageous features of similarity graph in metric space; (b) The additional point (i.e., the origin)
will be connected to diverse high norm points (usually solutions for MIPS), which will naturally
provide good starting points for the greedy search. The empirical experiments demonstrate that these
features significantly improve the efficiency.

2 Graph Based Search Methods and Our Approach

A graph based search method typically first constructs a well-designed similarity graph, e.g., kNN
graph in Approximate Nearest Neighbor (ANN) search, then performs greedy search on the graph.
Simple greedy search, such as for Maximum Inner Product Search (MIPS) task, can be described as
follows. Given a graph and a query, the algorithm randomly selects a vertex from the graph, then
evaluates the inner product of the query with the randomly seeded vertex and the vertex’s neighbors.
If one of its neighbors has a larger inner product with the query than the vertex itself, then we consider
the neighbor as a newly seeded vertex and repeat the searching step. This procedure stops when it
finds a vertex that has a larger inner product with the query than all the vertex’s neighbors. Greedy
search has a generalized version, which will be introduced in Algorithm 1 with more details.

It was pointed out in [1, 23] that in order to discover the exact solution of nearest neighbor search or
MIPS by the greedy search strategy, the graph must contain the Delaunay graph (see Definition 2)
with respect to (w.r.t.) the searching measure as a subgraph. For common ANN search cases,
searching w.r.t. `2-distance, the index graph should contain the Delaunay graph w.r.t `2-distance
(referred as `2-Delaunay graph) as a subgraph. In practice, approximate `2-Delaunay graphs are
usually constructed due to the difficulty in building the exact Delaunay graphs, such as VoroNet [4]
and Navigable Small World (NSW) [23]. Based on NSW, Hierarchical-NSW (HNSW) network [24]
exploits the hierarchical graph structure and heuristic edge selection criterion (see Algorithm 3 for
details), and often obtains performance improvement in ANN search tasks.

The idea of the Delaunay graph can be extended to inner product. The best graph for exact MIPS
by simple greedy search is the Delaunay graph w.r.t. inner product (referred as IP-Delaunay graph).
The recent work [25], namely ip-NSW, attempts to extend HNSW for metric spaces to MIPS. It is
worth noting that the authors of [25] show some important properties of Delaunay graph. However,
their HNSW based graph construction algorithm for inner product has some disadvantages:

1. Since the edge selection criterion of HNSW does not apply on inner product, the incident
edges of a vertex can have very similar directions, which will reduce the efficiency.

2. The hierarchical graph structure of HNSW is helpful in ANN search for metric measures,
but it has little effect on the MIPS problem.

We validate these claims by experiments on comparison with different versions of ip-NSW. The effect
of edge selection can be positive or negative in different datasets. Hierarchical structure does not
change the efficiency of inner product search. To resolve the edge selection issue, previously we
proposed a proper edge selection method, IPDG, specifically for inner product [31]. IPDG improves
the top-1 MIPS significantly but shows performance limitations for top-n ( n > 1) results. In this

0.4 0.5 0.6 0.7 0.8 0.9 1

Avg. Recall

0

0.5

1

1.5

2

Q
u

e
ri
e

s
 P

e
r 

S
e

c
o

n
d

10
5

Netflix top-1
Möbius-Graph

ip-NSW

ip-NSW-no-hie

ip-NSW-no-sel

0.4 0.5 0.6 0.7 0.8 0.9 1

Avg. Recall

0

2

4

6

8

10
10

4

Amovie top-1 Möbius-Graph

ip-NSW

ip-NSW-no-hie

ip-NSW-no-sel

0.4 0.5 0.6 0.7 0.8 0.9 1

Avg. Recall

0

2

4

6

8

10
10

4

Yelp top-1
Möbius-Graph

ip-NSW

ip-NSW-no-hie

ip-NSW-no-sel

0.4 0.5 0.6 0.7 0.8 0.9 1

Avg. Recall

0

2

4

6
10

4

Music-100 top-1
Möbius-Graph

ip-NSW

ip-NSW-no-hie

ip-NSW-no-sel

Figure 1: Experimental results for (top-1) Recall vs. Queries Per Second on different datasets. The
curve on the top shows superiority of the corresponding method. Möbius Graph, ip-NSW, ip-NSW-no-
hie, ip-NSW-no-sel stand for our proposed method, ip-NSW with both hierarchical structure and edge
selection, ip-NSW without hierarchical structure, and ip-NSW without edge selection respectively.
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paper, we propose a better approximation of IP-Delaunay graph (referred to as Möbius-Graph) for
MIPS, which provides a state-of-the-art MIPS method for various top-n MIPS results.

The intuition behind is that if we find a transformation that maps IP-Delaunay graph in the original
space to `2-Delaunay graph’s certain subgraph in the transformed space, we can make full use of
the successful `2-Delaunay graph approximation methods to build an IP-Delaunay graph. Given
each data point xi, we perform the Möbius transformation yi := xi/‖xi‖2, from which we have
a new data collection: S̃ = {0, y1, y2, . . . , yn}. After Möbius transformation, we apply existing
graph construction method (e.g., HNSW or “SONG” a recent variant [39]) and obtain an approximate
`2-Delaunay graph on the transformed data (i.e., S̃). We found that the IP-Delaunay graph w.r.t. S is
isomorphic to the neighborhood of 0 in `2-Delaunay graph w.r.t. S̃. Details about this statement can
be found in Section 3. In short, our approach can be summarized as the following steps:

1. Let S̃ := {yi = xi/‖xi‖2 | xi ∈ S} ∪ {0} be the transformed dataset.
2. Constructing approximate `2-Delaunay graph, (e.g., HNSW), w.r.t. S̃.
3. Let N denote the neighbors of 0 on the graph from the previous step. Then remove 0 and its

incident edges from the graph, and replace the vertices yi by original data vectors xi.
4. Let N be initial vertices, then perform greedy inner product search on the graph.

Note that our greedy search algorithm starts from a set of initial points instead of the data point 0
since 0 is not in S. Multiple initial points are possible in generalized greedy search described in
Algorithm 1. An equivalent description is starting from 0 but never returning it. Compared with the
existing graph based search method for MIPS (i.e., ip-NSW), our approach builds the index graph by
`2-distance (on the transformed data), which can largely preserve advantageous features of metric
similarity graph. Besides, our approach starts searching from well-chosen diverse top-norm points
N (the usage is similar as the hierarchical structure of HNSW), which will lead to more efficient
performance. Therefore, our approach to a large extent overcomes the weakness of the existing graph
based search method, and it is not surprising that our method performs empirically better.

3 Möbius Transformation and Delaunay Graph Isomorphism

As pointed out in [1] that, in order to find the exact nearest neighbor by simple greedy search, the
graph must contain Delaunay graph as a subgraph. This statement can extend to MIPS problem [25].
For generality, we will introduce Voronoi cell and Delaunay graph for arbitrary continuous binary
function f : X × X → R; however, we are typically interested in the cases of inner product
f(x, y) = x>y and negative `2-norm f(x, y) = −‖x− y‖ in this paper.
Definition 1. For fixed xi ∈ S ⊂ X and a given function f , the Voronoi cell Ri is defined as

Ri := Ri(f, S) := {q ∈ X | ∀x ∈ S, f(xi, q) ≥ f(x, q)}.

Voronoi cells determine the solution of MIPS problem. One can observe from the definition above
that, when f(x, y) = x>y, xj ∈ argmaxxi∈S x

>
i q if and only if q ∈ Rj . Since recording Voronoi

cells is expensive. We instead record its dual diagram, namely Delaunay graph, defined as follows.
Definition 2. For fixed function f and dataset S ⊂ X , and given Voronoi cells Ri, i = 1, 2, . . . , n
w.r.t. f and S, the Delaunay graph is an undirected graph with vertices S, and the edge {xi, xj}
exists if and only if Ri ∩Rj 6= ∅.

Delaunay graph records adjacency of Voronoi cells. If cell Ri and cell Rj is adjacent to each other,
then there exists an edge between their corresponding nodes xi and xj . If f(x, y) = −‖x− y‖, then
the graph is called `2-Delaunay graph. If f(x, y) = x>y, then the graph is called IP-Delaunay graph.

We now narrow the scope to MIPS problem. Let f(x, y) = x>y and X = Rd\{0}, and we aim to
solve the optimization problem (1). We remove 0 from Rd for two reasons. Firstly, 0 has the same
inner product value with any points. Secondly, if 0 is not removed, then every Voronoi cell w.r.t. the
inner product contains 0 as a common element, so the Delaunay graph will be fully connected and
not interesting. We also require the following mild assumption on dataset to simplify the analysis.
Assumption 1. The dataset S satisfies that its conical hull is the whole space. More precisely,

coni(S) :=
{ n∑
i=1

αixi

∣∣∣xi ∈ S, αi ≥ 0
}
= Rd. (A1)
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Assumption 2 (General position). For k = 2, 3, . . . , d+ 1, there do not exist k points of the dataset
S lies on a (k − 2)-dimensional affine hyperplane, or k + 1 points of S on any (k − 2)-dimensional
sphere. If so, then we say dataset S is in general position.

Assumptions 1 and 2 are often mild in real data. When the data points are embedded vectors of
users, items, (in recommender system) entities or sentence (in natural language processing). In these
scenarios, the entries of data vectors are distributed on the whole real line. With high probability,
each hyperoctant contains at least one data point so that the convex hull of the dataset contains 0 as
an interior point. Assumption 2 holds with probability one if the data vectors in S are independently
and identically following any continuous distribution on Rd. For such dataset S, the corresponding
`2-Delaunay graph and IP-Delaunay graph are unique. See [10] for details. Now we are ready to
introduce two important criterion of these Delaunay graphs.
Proposition 1 (Empty half-space criterion). For a fixed dataset S ⊂ Rd, suppose there exists an
open half-space H of Rd satisfying: (a) xi and xj are on the boundary of H , (b) H contains no data
points, then there exists an edge connecting xi and xj in IP-Delaunay graph. Conversely, if such an
edge exists, then the open half space H must exist.

In other words, empty half-space criterion says, in IP-Delaunay graph, edge {xi, xj} exists if and
only if there is a (d− 1)-dimensional hyperplane, which passes through xi and xj , such that one of
its corresponding open half-space is empty, and the other one contains all data points except xi and
xj . The empty half-space criterion of IP-Delaunay graph is closely related to empty sphere criterion
of `2-Delaunay graph as what follow.
Proposition 2 (Empty sphere criterion). For a fixed dataset S ⊂ Rd, a subset of d+ 1 points of S
are fully connected in the `2-Delaunay graph corresponding to S if and only if the circumsphere of
these points does not contain any other points from the dataset S inside the sphere.

Once this criterion is satisfied, we call the subgraph of these d+ 1 vertices a d-simplex. The proof
of the empty sphere criterion is not provided here. We refer readers to see [14] for details. The
connection between these criterions can be demonstrated by the transformation

g : Rd\{0} → Rd\{0}, g(x) =
x

‖x‖2
. (2)

Under this transformation, every hyperplane is mapped to a sphere passing through the origin. This is
due to the fact that transforms on Rd of the form

g(x) = b+
A(x− a)
‖x− a‖ε

(3)

for orthogonal matrix A and ε = 0 or 2 are Möbius transformations. Indeed, by Liouville’s conformal
mapping theorem (a generalized version can be found in [21]), for d > 2, (3) characterizes all Möbius
transformations. An important and useful property of Möbius transformation says, if a hyperplane
does not pass through origin, then its image under any Möbius transformation is a sphere passing
through the origin.
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Figure 2: (a) Empty half-space criterion for IP-Delaunay graph. (b) The IP-Delaunay graph. (c)
Empty sphere criterion for `2-Delaunay graph after transformation. (d) The `2-Delaunay graph after
transformation. The red edges form the subgraph that is isomorphic to IP-Delaunay graph.

Figure 2 shows an example when d = 2. The line AB in Figure 3 divides the plane into two open
half-spaces. One of the half-space does not contain any data points, so A and B are connected in
IP-Delaunay graph by Proposition 1. Let A′ and B′ be the images of A and B under transformation
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(2). According to the property of Möbius transformation, the image of line AB is the circumcircle
of points 0, A′ and B′ in Figure 3. The empty half-space criterion of A and B implies that the
circumcircle does not contain any data points inside, so there is a simplex with vertices 0, A′ and B′
in the `2-Delaunay graph by empty sphere criterion. This observation is formalized as follows.
Theorem 1. Let X = Rd\{0}. We assume S satisfies Assumption 1 and 2. For i ∈ [n], let
yi := xi/‖xi‖2, S′ := {y1, . . . , yn} and S̃ = S′ ∪ {0}, then the following are equivalent:

(a) The IP-Delaunay graph w.r.t. S contains an edge {xi, xj}.
(b) There exists a ∈ Rd\{0} such that x>i a = x>j a ≥ max

x∈S
x>a > 0.

(c) There exists c ∈ X such that ‖yi − c‖ = ‖yj − c‖ = ‖c‖ ≤ min
y∈S′
‖y − c‖.

(d) There exists a d-simplex in `2-Delaunay graph w.r.t S̃ contains vertices {0, yi, yj}.

Equivalence between (a) and (d) in the theorem implies an isomorphism between IP-Delaunay graph
and a subgraph of `2-Delaunay graph. Hence we immediately have the next corollary.
Corollary 1. The following graphs are isomorphic after removing their isolated vertices:

(a) the IP-Delaunay graph on S,
(b) a subgraph of `2-Delaunay graph on S̃ with every edge {yi, yj} satisfying the following

condition: there exists a d-simplex in `2-Delaunay graph contains vertices {0, yi, yj},

where the isomorphism is xi 7→ yi for xi that are not isolated in IP-Delaunay graph.

Considering the example in Figure 2, Corollary 1 says the IP-Delaunay graph in Figure 3 is isomorphic
to the subgraph in red in Figure 3. Thus, good approximation of `2-Delaunay graph also applies to
approximation of IP-Delaunay graph. See next section for implementation details.
Remark 1 (Convex hull and extreme point). If a vertex is not isolated in IP-Delaunay graph, then we
say it is an extreme point. The concept of the extreme point is introduced in [3]. Under Assumption 1,
a point is extreme if and only if it locates on the boundary of the convex hull of S. In this case, building
the IP-Delaunay graph is equivalent to find the convex hull. In Corollary 1, we derive an equivalent
way to find the convex hull of a finite set. For the purpose of convex hull construction, Assumption 1
is not required since it always holds after some translation. We note that there exist algorithms for
finding convex hull [3]. This method is not computationally feasible on high dimensional data, and
there does not exist a convex hull approximation in previous work, so we propose IP-Delaunay graph
approximation by graph isomorphism in this paper.

4 Implementation in Large High Dimensional Data

For large high dimensional data, finding the exact IP-Delaunay graph of the data points is not compu-
tationally feasible. Therefore, practical and efficient graph construction and searching algorithm for
large scale data in high dimension are in demand. In this work, we provide the algorithm (summarized
in Algorithm 4) for building Möbius-Graph and greedy search on it when we have massive high
dimensional data. We will first introduce a generalized greedy search algorithm because it will be
repeatedly used during graph construction and inner product search.

We recall that our goal of greedy search is to find x ∈ S to maximize f(x, q) for any query q.
Here, we consider either f(x, y) = −‖x− y‖ or f(x, y) = x>y. For simplicity, we say the nearest
neighbor of x is y when y has largest evaluation of f(x, · ). We first initialize priority queue C (it
can be random or well-chosen data points), then check the evaluation of f(x, q) for all x ∈ C and all
out-neighbors of these x’s. Among those vectors we have evaluated, we replace C by top-k vectors
in descending order of evaluation of function f( · , q). We consider the top-k elements in C as the
new priority queue. We update C until it does not change anymore. Algorithm 1 summarizes this
procedure. If k = 1, then this generalized greedy search is equivalent to the simple version described
in Section 2. This generalized greedy search allows the algorithm to return approximate top-k items,
which are valuable for query search and recommender system.

Now we are ready to present the graph construction algorithm (summarized in Algorithms 2). By
Theorem 1 and Corollary 1, the best graph we want to use is IP-Delaunay graph on S, which is
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Algorithm 1: GREEDY-SEARCH(q, P,G, k, f)

1: Input: query element q, a set of enter points P , graph G = (S,E), number of candidates to
return k, measurement function f .

2: Initialize the set of priority queue, C ← P .
3: Mark elements of P as checked and the rest of vertices as unchecked.
4: if |C| > k then
5: C ← top-k elements of x ∈ C in descending order of f(x, q).
6: while ∃x ∈ S unchecked and C keeps update do
7: C ← C ∪ {y ∈ S : x ∈ C, y unchecked, (x, y) ∈ E}
8: Mark elements in C as checked.
9: if |C| > k then

10: C ← top-k candidates of x ∈ C in descending order of f(x, q).
11: Output: C.

Algorithm 2: GRAPH-CONSTRUCTION(S, k, d)

1: Input: dataset S, the size of priority queue k, maximum outgoing degree of graph d.
2: n← |S|. For i ∈ [n], let yi = xi/‖xi‖2.
3: S̃ ← {0, y1, . . . , yn}. Define y0 = 0 ∈ S̃.
4: G← fully connected graph with vertices {y0, . . . , yd−1}.
5: for i = d to n do
6: C ← GREEDY-SEARCH(yi, {0}, G, k, `2-distance).
7: N ← SELECT-NEIGHBORS(0, C, d).
8: Add edges (y, z) to G for every z ∈ N .
9: for z ∈ N do

10: C ← {w ∈ S̃ : (z, w) is an edge of G} ∪ {y}.
11: N ← SELECT-NEIGHBORS(0, C, d).
12: Let N be the out-neighbors of z in G.
13: P ′ ← out-neighbors of 0 in graph G.
14: P ← {xi ∈ S : yi ∈ P ′}.
15: Remove 0 and its incident edges from G and replace the vertices of G by the ones before

transformation.
16: Output: (G,P ).

Algorithm 3: SELECT-NEIGHBORS(x,C, d)
1: Input: element x, the set of k-nearest neighbors C of x, maximum outdegree d.
2: Initialize the out-neighbors set N of x, i.e., N ← ∅.
3: Order yi ∈ C in ascending order of ‖x− yi‖.
4: i← 1.
5: while |N | ≤ d and i ≤ |C| do
6: if ‖x− yi‖ ≤ minz∈N ‖z − yi‖ then
7: N ← N ∪ {yi}.
8: i← i+ 1.
9: Output: a set of elements N .

isomorphic to a subgraph of `2-Delaunay graph on S̃ after transformation. We will consider HNSW
as an `2-Delaunay graph approximation as proposed in [24]. The authors suggest that the hierarchy
of Delaunay graph can be approximated by edge discrimination. Furthermore, we will consider
a directed graph as an approximation to reduce the total degree. Given a dataset S̃, one wants to
build the directed graph on S̃ iteratively. A directed graph is initialized by a random graph. In every
iteration, for a given directed graph G with vertices S̃, we consider an isolated vertex x and apply
greedy search (Algorithm 1) to find k-nearest neighbor of x, say Cx. x will be connected to its nearest
element, say y1 in the candidate set Cx. Now the neighbor set is initialized to be N(x) = {y1}.
For the next nearest neighbor y, we add it to the neighbor set N(x) if it satisfies edge selection
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Algorithm 4: MIPS(Q,S,K, k, l, d)
1: Input: A set of queries Q, dataset S, the number of elements will be returned K, the size of

candidate set k for graph construction and l for greedy search, maximum outgoing degree of
graph d.

2: (G,P )← GRAPH-CONSTRUCTION(S, k, d).
3: for q ∈ Q do
4: Cq ← GREEDY-SEARCH(q, P, S,G, l, inner product).
5: Output: the set of top-K objects Cq ⊂ S in descending order of inner product with q for q ∈ Q.

criterion: ‖x− y‖ ≤ minz∈N(x) ‖z − y‖. Iterative process stops when d many valid neighbors are
found. Algorithm 3 represents an embodiment of this procedure. This edge selection can improve the
diversity of the direction of incident edges. We repeat this step and stop when either all elements in
Cx has been checked or the maximum outdegree d is achieved. The edges (x, y) for y ∈ N(x) are
added to the graph. Moreover, for y ∈ N(x), we will add x to N(y). If |N(y)| > d, then we update
N(y) according to the edge selection criterion. This final step can reduce the effect caused by the
random order of vertices. Corollary 1 suggests that IP-Delaunay graph is the neighborhood (in the
graph sense) of 0 in `2-Delaunay graph. So for any query q, we will apply greedy search starting
from the out-neighbors of 0 (i.e., P in Algorithm 2). Then the algorithm will search the optimal
object w.r.t. inner product by greedy search. See Algorithm 4.

5 Experiments

In this section, we compare our method with state-of-the-art MIPS methods, on four common
datasets (see Table 1): Netflix, Amazon Movie (Amovie) (http://jmcauley.ucsd.edu/data/amazon),
Yelp (https://www.yelp.com/dataset/challenge) and Music-100. The first three are popular recom-
mendation datasets. For Netflix, we use its 50-dimensional user and item vectors from [37]. For
Amovie and Yelp, we utilize the matrix factorization method in [17] to get 100-dimensional latent
vectors for user and item. Music-100 is introduced in [25] for the MIPS problem.

Table 1: Statistics of the datasets.

Datasets # Base Data # Query Data # Dimension # Extreme % Extreme
Netflix 17770 1000 50 8017 45.12%
Amovie 104708 7748 100 3169 3.03%
Yelp 25815 25677 100 722 2.80%
Music-100 1000000 1000 100 304431 30.44%

The ground truth of each query vector is the top-1, top-10, and top-100 measuring by the inner product.
Only a fraction of data points can be the top-1 solution of (1), i.e., extreme points in Remark 1, whose
percentage is an important feature of the dataset in MIPS problem. We estimate the percentage of
extreme points for each dataset as below: for each vector x in the base, we calculate its inner product
x>y with all vector y in the base (including x itself). Then we count the number of unique top-1
vector y (i.e., extreme points) and compute the percentage of extreme points (i.e., last column of
Table 1). This is not an exact estimation, but it is a tight lower bound.

5.1 Experimental Settings
We refer the new proposed algorithm as Möbius-Graph, and compare it with three previous state-of-
the-art MIPS methods, Greedy-MIPS [37], ip-NSW [25], and Range-LSH [36], which are the most
representative for MIPS. In Range-LSH, the dataset is first partitioned into small subsets according
to the `2-norm rank and then normalize data using a local maximum `2-norm in each sub-dataset.
This overcomes the limited performance due to the long tail distribution of data norms [36]. The
authors of [37] used an upper bound of the inner product as the approximation of MIPS and designed
a greedy search algorithm to find this approximation, called Greedy-MIPS. We use their original
implementations. The open source code of ip-NSW adopts HNSW instead of NSW for graph
construction. We found that the hierarchical structure and heuristic edge selection in HNSW does
not significantly improve the performance of ip-NSW; see Figure 1. To provide comprehensive
evaluation, we implement Möbius-Graph by both HNSW and SONG [39]. All comparing methods
have tunable parameters. To get a fair comparison, we vary all parameters over a fine grid.
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As the evaluation measures, we choose the trade-offs Recall vs. Queries Per Second (QPS) and Recall
vs. Percentage of Computations. Recall vs. Queries Per Second reports the number of queries an
algorithm can process per second at each recall level. Ideally, one wishes to have high recall levels,
the method can process as many queries as possible (i.e., more efficient). Recall vs. Percentage of
Computations checks the pair-wise computations at each recall level, the less the better. For each
algorithm, we will have multiple points scattered on the plane by tuning parameters. To plot curves,
we first find out the best result, maxx, along with the x-axis (i.e., Recall). Then 100 buckets are
produced by splitting the range from 0 to maxx evenly. For each bucket, the best result along the
y-axis (i.e., the biggest amount of queries per second) is chosen. If there are no data points in the
bucket, it will be ignored. In this way, we shall have at most 100 pairs of data for drawing curves. All
experiments were performed on a 2X 3.00 GHz 8-core i7-5960X CPU server with 32GB memory.

5.2 Experimental Results
Experimental results for Recall vs. Queries Per Second (QPS) are shown in Figure 3. Each column
corresponds to one dataset and figures in each row are results for top-1, top-10 and top-100 labels
respectively. As can be seen, the proposed method Möbius-Graph works much better than previous
state-of-the-art methods in most of the cases on all datasets.

The interesting fact is the effect of the extreme points percentage across different datasets. The
Möbius-Graph embodiment is motivated by that the percentage of extreme points is low. As a
result, the constructed approximate Delaunay graph would be efficient for maximum inner product
retrieval. Nevertheless, we can see that, the proposed method works very well for datasets with a high
percentage of extreme points, such as Netflix which has 45% of extreme points and the Music-100
which has more than 30%. We also show results for different ground truth label sets, which tell that
the proposed method works well in various cases, not only for the top-1 label but also for the top-10
and top-100 labels. These results demonstrate the robustness of the proposed Möbius-Graph in MIPS.
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Figure 3: Experimental results for Recall vs. Queries Per Second on different datasets. We focus on
top-1, top-10, and top-100 ground-truth labels. Here the best results are in the upper right corners.

Conversely, it is difficult to tell which baseline works better than others across all datasets. Range-
LSH works relatively well on Netflix but much worse than other methods on the other three datasets.
The baseline ip-NSW works well on datasets with high extreme points percentages (e.g., Netflix and
Music-100) but becomes worse on other datasets. Greedy-MIPS shows priorities over ip-NSW on
datasets with low extreme points percentages (e.g., Amovie and Yelp) at some recall levels.

Results for Recall vs. Percentage of Computations are shown in Figure 4. Only top-10 results are
shown due to the limited space. Top-1 and top-100 results can be found in the Appendix. Note
that this measurement is not meaningful for Greedy-MIPS. Results for Recall vs. Percentage of
Computations are shown in Figure 4. In this view, the proposed Möbius-Graph works best in all
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Figure 4: Experimental results for Recall vs. Percentage of Computations on different datasets. Best
results are in the lower right corners.

cases. Range-LSH works comparably with others on smaller datasets (i.e., the first three) in this
view. Recall vs. Percentage of Computations does not consider the cost of different index structures.
Although Range-LSH works well in this view, its overall time cost is much higher than others as
shown in Figure 3. The possible reason is that the table based index used in Range-LSH is not that
efficient in searching. Besides, Range-LSH works badly on Music-100, which is much larger. The
curve for Range-LSH cannot be shown in the scope of Music-100.

Besides, we represent the graph construction time cost by ip-NSW and Möbius-Graph in Table 2. As
can be seen, Möbius-Graph consumes 13.7% to 65.5% less time in index construction than ip-NSW,
which brings great benefits for real applications. The reason is that metric measure (i.e., `2) based
searching (in the graph construction) is more efficient than inner product based searching.

Table 2: Graph Construction Time in Seconds.

Netflix Amovie Yelp Music-100
ip-NSW 2.19 36.95 6.78 396.82
Möbius-Graph 1.89(-13.7%) 24.35(-34.1%) 2.34(-65.5%) 162.24(-59.1%)

5.3 Implementation by SONG
To exclude bias from implementation, we also implement Möbius-Graph and ip-NSW by another
search on graph platform, SONG [39]. The results are shown in Figure 5. As can be seen, the
implementation of SONG is more efficient than HNSW, both for Möbius-Graph and ip-NSW, but their
priority order keeps the same. Möbius-Graph works better than ip-NSW under both implementations.
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Figure 5: Comparison of two implementations, HNSW and SONG, on Möbius-Graph and ip-NSW.

6 Conclusion and Future Work
Maximum Inner Product Search (MIPS) is a challenging problem with wide applications in search
and machine learning. In this work, we develop a novel search on the graph method for MIPS. In the
view of computational geometry, we show that under Möbius transformation, an isomorphism exists
between Delaunay graph for inner product and `2-norm. Based on this observation, we present a
graph indexing algorithm that converts subgraph of `2-Delaunay graph into IP-Delaunay graph. Then,
we perform MIPS via greedy search on the transformed graph. We demonstrate that our approach
provides an effective and efficient solution for MIPS.

This paper focuses on fast search under the non-metric measure, inner product. Beyond inner product,
more complicated measures has been studied, such as Bregman divergence [6], max-kernel [8, 7] and
even more generic measures [32]. It would be interesting to extend the method proposed in this paper
to these measures. Another promising direction is to adopt a GPU-based system for fast ANN search
and MIPS, which has been shown highly effective for generic ANN tasks [22, 19, 39]. Developing
GPU-based algorithms for MIPS (and related applications) is a topic which can be further explored.
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Supplementary Material

A Search on Delaunay Graph

Greedy search on Delaunay graph is sufficient and necessary for achieving the global optimum in
ANN search [1, 23]. The sufficiency is generalized to a larger class of f in [25]. We first consider a
general optimization problem. Let X ⊂ Rd, we consider a data set S = {x1, . . . , xn} ⊂ X and aim
to solve the optimization problem, for q ∈ X ,

argmax
xi∈S

f(xi, q) where f : X ×X → R. (4)

Assuming f is continuous, we have the following theorem.

Theorem 2. For given f , we assume for any dataset S, each the Voronoi cell Ri is a connected. Let
G = (S,E) be the Delaunay graph w.r.t. the Voronoi cells. Then for any q ∈ X , simple greedy search
on Delaunay graph returns the solution of (4). In other words, letN(xi) = {xj ∈ S : {xi, xj} ∈ G}
be the neighbors of xi on Delaunay graph. If xi satisfies

f(xi, q) ≥ max
xj∈N(xi)

f(xj , q), (5)

then xi a solution of (4). Conversely, for any G′ does not contain Delaunay graph as a subgraph,
there exists a query q ∈ Y such that greedy search onG′ does not always retrieve all global maximum.

Proof. By the assumption on f , we have

R̃i =
⋂

x∈N(xi)

{q ∈ X : f(xi, q) ≥ f(xj , q)}

is connected and Ri ∪ {q} ⊂ R̃i. Hence we can define a path c : [0, 1] → Rk such that c(0) ∈ Ri
and c(1) = q. For every xj ∈ S, f(xj , c(0)) ≤ f(xi, c(0)). If f(xj , c(1)) ≥ f(xi, c(1)), then
by intermediate value theorem, there exists t ∈ [0, 1] such that f(xj , c(t)) = f(xi, c(t)). Hence
Ri ∩Rj 6= ∅, and xj is a neighbor of xi on G. In this case, by (5), we must have f(xi, q) = f(xj , q).
Therefore, for xj ∈ S, we have f(xi, q) ≥ f(xj , q).
Conversely, suppose G′ misses an edge in Delaunay graph, then there exists xi and xj such that
Ri ∩Rj 6= ∅, but xj /∈ N(xi). Suppose the query q ∈ Ri ∩Rj and the initial point is xi, then both
xi and xj are global maximum of f( · , q). xj is not neighbor xi, but xi is a global maximum, so
greedy search stops at this step. Thus, xj cannot be discovered as a global maximums.
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B Additional Comments on Assumption 1

Assumption 1 eases the arguments in Section 3. For better understanding of Assumption 1, we
develop the following equivalent expressions.

Proposition 3. The following are equivalent:

(a) S satisfies (A1).

(b) The convex hull of S contains 0 as an interior point.

(c) For every a ∈ Rd\{0}, there exists x ∈ S such that x>a > 0.

Proof. (a)⇒ (b). Suppose 0 is not an interior point of Conv(S), then there exists a closed half-space
H with a boundary point 0 contains S. H is a convex cone, so coni(S) ⊂ H $ Rd.

(b) ⇒ (c). For every a ∈ Rd\{0}, there exists β > 0 such that βa ∈ Conv(S). Hence βa =∑n
i=1 αixi for some αi ≥ 0. Then 0 < βa>a = βa>

∑n
i=1 αixi = β

∑n
i=1 αix

>
i a, so there exists

x ∈ S such that x>a > 0.

(c)⇒ (a). Suppose coni(S) 6= Rd, then coni(S) ⊂ H for some closed half-space H . For a /∈ H
such it is perpendicular to the boundary H , there does not exists x ∈ S such that x>a > 0.

Suppose Assumption 1 is not satisfied, the MIPS problem is still interesting. We will discuss this
situation in the following two cases.
Case 1. If Assumption 1 is not true, but the queries always locate in the conical hull of the dataset S,
then our approach is still valid because, for every query, the correct solution of MIPS problem is still
a neighbor of 0 after Möbius transformation.

Case 2. Suppose Assumption 1 is not true, and queries can be any points in the Euclidean space, then
our approach does not work. However, we can slightly change the graph construction algorithm as
follows. We find the center of the dataset, say c, then we apply the transformation

g(x) =
x− c
‖x‖2

to every data point to obtain S̃. We note that such g(x) is still a Möbius transformation since it is
of the form in (3). It is not difficult to check the isomorphism between IP-Delaunay graph and the
subgraph of `2-Delaunay graph introduced in Corollary 1. However, this method is only suggested
in this special case. Centering the data points changes all the norms, while the length of the vector
decides the chance of being returned in MIPS problem.

C Proof of Theorem 1

(a)⇒ (b). By Definition 1, the Voronoi cell Ri w.r.t. inner product and xi is

Ri = {q 6= 0 : x>i q ≥ x>k q for k ∈ [n]}.

Similarly,

Rj = {q 6= 0 : x>j q ≥ x>k q for k ∈ [n]}.

By Definition 2, (a) implies there exists a ∈ Ri ∩Rj . a also satisfies x>i a = x>j a ≥ max
x∈S

x>a > 0.

(b)⇒ (a). If a satisfies statement (b), then a ∈ Ri ∩Rj , which implies (a) by Definition 2.

(b)⇒ (c). Firstly, we notice that xi = yi/‖yi‖2, then we let b = x>i a and c = a
2b . We note that

b > 0 by Proposition 3 (c). Then we have

y>i c =
y>i a

2x>i a
=
y>i a‖yi‖2

2y>i a
=

1

2
‖yi‖2.
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Hence,‖yi − c‖2 = ‖yi‖2 − 2y>i c + ‖c‖2 = ‖yi‖2 − ‖yi‖2 + ‖c‖2 = ‖c‖2. Using (A1), we have
x>i a ≥ maxx∈S x

>a > 0, so for x ∈ S and y = x/‖x‖2 ∈ S′,

y>c =
y>a

2x>i a
=
x>j a‖yj‖2

2x>a
≤ 1

2
‖yj‖2.

Therefore, ‖y − c‖2 = ‖y‖2 − 2y>c+ ‖c‖2 ≤ ‖y‖2 − ‖y‖2 + ‖c‖2 = ‖c‖2. Since this is true for
all x ∈ S, we have ‖c‖ ≤ miny∈S′ ‖y − c‖. Since x>i a = x>j a, we can repeat the arguments for xj
to obtain statement (c).

(c)⇒ (b). This can be proved by observing that every step of the proof of (b)⇒ (c) is invertible.

(c)⇔ (d). This is due to empty sphere criterion. See Proposition 2.

D Additional Empirical Experiments

In [25], it was claimed that their algorithm can adopt any graph construction algorithm, including
NSW [23] and HNSW [24]. For the sake of fairness, we compare Möbius-Graph with different
versions of ip-NSW. Edge selection is a novel contribution of HNSW. However, there is no guarantee
for its applicability on non-metric measure. We compare the MIPS efficiency of ip-NSW with and
without edge selection step and find an interesting observation. Figure 6 shows that, for Amovie and
Yelp, edge selection results in poor performance, while the effect is not obvious on the other two
datasets. It is possible that edge selection is not helpful when the proportion of extreme points is small.

The hierarchical graph structure in HNSW is to perform multi-scale hopping. Our Möbius-Graph can
find good starting points, so it would be interesting to see whether ip-NSW can work well by starting
points found by Möbius-Graph. Here we design one variant for ip-NSW, ip-NSW-init, which gives
up the hierarchical index structure but exploits starting points found by Möbius-Graph. For each
query, we will exploit Möbius-Graph to find a start point by conducting one step greedy search. This
step is done offline and the time cost will not be counted as that of ip-NSW-init. The results are
represented in Figure 7. If ip-NSW starts searching from initial points found by Möbius-Graph, its
performance can be significantly improved in top-1 inner product search. However, such difference
disappears if we consider top-100 results. We also compare the effect of hierarchical graph structure
on the performance of ip-NSW. As can be seen in Figure 8, its impact is very little.

0.4 0.5 0.6 0.7 0.8 0.9 1

Avg. Recall

0

0.5

1

1.5

2

Q
u

e
ri
e

s
 P

e
r 

S
e

c
o

n
d

10
5

Netflix top-1 Möbius-Graph

ip-NSW

ip-NSW-no-sel

0.4 0.5 0.6 0.7 0.8 0.9 1

Avg. Recall

0

2

4

6

8

10
10

4

Amovie top-1 Möbius-Graph

ip-NSW

ip-NSW-no-sel

0.4 0.5 0.6 0.7 0.8 0.9 1

Avg. Recall

0

2

4

6

8

10
10

4

Yelp top-1 Möbius-Graph

ip-NSW

ip-NSW-no-sel

0.4 0.5 0.6 0.7 0.8 0.9 1

Avg. Recall

0

2

4

6
10

4

Music-100 top-1

Möbius-Graph

ip-NSW

ip-NSW-no-sel

0.4 0.5 0.6 0.7 0.8 0.9 1

Avg. Recall

0

2

4

6

8

Q
u

e
ri
e

s
 P

e
r 

S
e

c
o

n
d

10
4

Netflix top-10 Möbius-Graph

ip-NSW

ip-NSW-no-sel

0.2 0.4 0.6 0.8 1

Avg. Recall

0

2

4

6
10

4

Amovie top-10 Möbius-Graph

ip-NSW

ip-NSW-no-sel

0 0.2 0.4 0.6 0.8 1

Avg. Recall

0

2

4

6

8
10

4

Yelp top-10

Möbius-Graph

ip-NSW

ip-NSW-no-sel

0 0.2 0.4 0.6 0.8 1

Avg. Recall

0

2

4

6
10

4

Music-100 top-10

Möbius-Graph

ip-NSW

ip-NSW-no-sel

0.2 0.4 0.6 0.8 1

Avg. Recall

0

1

2

3

Q
u

e
ri
e

s
 P

e
r 

S
e

c
o

n
d

10
4

Netflix top-100
Möbius-Graph

ip-NSW

ip-NSW-no-sel

0 0.2 0.4 0.6 0.8 1

Avg. Recall

0

0.5

1

1.5

2

2.5
10

4

Amovie top-100

Möbius-Graph

ip-NSW

ip-NSW-no-sel

0 0.2 0.4 0.6 0.8 1

Avg. Recall

0

1

2

3
10

4

Yelp top-100

Möbius-Graph

ip-NSW

ip-NSW-no-sel

0 0.2 0.4 0.6 0.8 1

Avg. Recall

0

0.5

1

1.5

2

2.5
10

4

Music-100 top-100

Möbius-Graph

ip-NSW

ip-NSW-no-sel

Figure 6: Experimental results for Möbius-Graph, ip-NSW with and without edge selection.
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Figure 7: Experimental results for Möbius graph, ip-NSW using random initial points and ip-NSW
using initial points from Möbius graph.
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Figure 8: Experimental results for Möbius-Graph, ip-NSW with and without hierachical structure.
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Figure 9 completes the experimental results of Figure 4 in Section 5.
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Figure 9: Experimental results for Recall vs. Percentage of Computations. We show remaining results
for top-1 and top-100 labels. The curves for Range-LSH on Music-100 are out of the showing scopes.
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