
R2SDH: Robust Rotated Supervised Discrete Hashing

Jie Gui
Rutgers University

Piscataway, NJ, 08854, USA
guijiejie@gmail.com

Ping Li
Baidu Research

Bellevue, WA, 98004, USA
pingli98@gmail.com

ABSTRACT

Learning-based hashing has recently received considerable atten-

tions due to its capability of supporting e�cient storage and re-

trieval of high-dimensional data such as images, videos, and doc-

uments. In this paper, we propose a learning-based hashing algo-

rithm called “Robust Rotated SupervisedDiscrete Hashing” (R2SDH),

by extending the previous work on “Supervised Discrete Hash-

ing” (SDH). In R2SDH, correntropy is adopted to replace the least

square regression (LSR) model in SDH for achieving better robust-

ness. Furthermore, considering the commonly used distance met-

rics such as cosine and Euclidean distance are invariant to rota-

tional transformation, rotation is integrated into the original zero-

one label matrix used in SDH, as additional freedom to promote

�exibility without sacri�cing accuracy. The rotationmatrix is learned

through an optimization procedure. Experimental results on three

image datasets (MNIST, CIFAR-10, and NUS-WIDE) con�rm that

R2SDH generally outperforms SDH.
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1 INTRODUCTION

In large-scale applications in search, data mining, and machine

learning, it is highly desirable that the data should be organized

and indexed e�ciently and accurately. As a well-established and

powerful large-scale technique,hashing has shown promising per-

formance and has received great attentions from researchers in

data mining, machine learning, computer vision, information re-

trieval, and related areas due to its practical utility. Hashing gen-

erally involves generating a range of hash functions to map each

instance such as an image, a video, a document or other types of

data into a vector of binary code. The produced hash codes should

preserve the original instance structure (e.g., similarities between

the original instances). In general, distance computations can be
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conducted very e�ciently in the Hamming space. Thus, after the

data are hashed, subsequent algorithms based on pairwise compar-

isons can be calculatedmore e�ciently in large-scale datasets. Due

to the �exibility of binary representations, hashing methods can

be applied in many situations, for instance, searching e�ciently

by investigating only instances falling into buckets close to the

query based on the Hamming distance or using the binary codes

for other tasks such as face recognition, image classi�cation, digit

recognition, and face indexing.

Generally speaking, hashing algorithms can be classi�ed into

two main categories: (A) learning-free hashing methods; and (B)

learning-based (also known as data-dependent) hashing methods.

1.1 Learning-Free Hashing Methods

Learning-free hashing methods do not need training data and ran-

domly establish a series of hash functions without any learning.

There are numerous learning-free methods. If we restrict the dis-

cussion tomethodswhich producebinary (or integer) outputs, then

popular learning-free algorithms include at least the following:

• Sign (Gaussian) random projections: the collision probability

(or empirically the hamming distance) of the hash code is

proportional to the cosine similarity of the data [6, 8, 20].

• Sign Cauchy random projections: the collision probability is

proportional to the χ2 similarity of the data [22].

• (b-bit) minwise hashing (for binary data): the collision prob-

ability is proportional to the resemblance [2–4, 19, 21].

• Consistent weighted sampling (CWS): the collision probabil-

ity is proportional to the min-max similarity [13, 17, 18, 31].

Apparently, the advantage of learning-free methods is that they

do not require any training. However, one will then have to choose

appropriate hashing methods based on data, otherwise the perfor-

mance might be disappointing. For example, while random projec-

tion methods (and variants such as random fourier features) are

very popular, they are often not as accurate [18] (i.e., requiring

long hashing code). Minwise hashing (and variants) and consistent

weighted sampling generate integer hash code which are equiva-

lent to high-dimensional sparse binary data and typically outper-

form random projection-based methods (in terms of accuracy ver-

sus number of hashes) in real data.

1.2 Learning-Based Hashing Methods

Recently, data-dependent (learning-based) hashing algorithms have

become popular, since (potentially) learned compact hash codes

would be able to e�ciently and e�ectively organize and index large-

scale data. Unlike learning-free methodswhich randomly construct

hash functions, learning-based hashing algorithms aim to generate

short hash codes by utilizing training data. An enormous volume
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of literature has been devoted to develop a wide variety of hash-

ing algorithms which can be further divided in into the following

sub-categories.

Unsupervised hashing: The training instance labels are not

required in learning. For example, Gong et al. [10] presented an it-

erative quantization (ITQ) method that minimized the binarization

loss between the original instances and hash codes.Weiss et al. [44]

proposed a spectral hashing (SH) method whose objective func-

tion was similar to that of Laplacian eigenmaps [1]. Other unsu-

pervised learning-based hashing algorithms such as anchor graph

hashing (AGH) [28], inductive manifold hashing (IMH) [38] with

t-distributed stochastic neighbor embedding (t-SNE) [30], and scal-

able graph hashing with feature transformation (SGH) [14] have

also been proposed. Because unsupervised hashing does not take

into consideration the training example labels, useful information

key to classi�cation may be lost. Therefore, many semi-supervised

hashing and supervised hashing methods have been proposed.

Semi-supervised learning-based hashing: Hash function is

learned from labeled examples and considerably more unlabeled

examples. For example, Kulis and Darrell [15] presented a binary

reconstructive embedding (BRE) algorithm that minimized the re-

construction error between the original Euclidean distance and

the learned Hamming distance. Wang et al. [43] presented a semi-

supervised hashing (SSH) method that simultaneously maximized

the variance of all (unlabeled and labeled) training instances and

minimized the empirical loss for pairwise labeled training instances.

Supervised learning-basedhashing: Hash functions are learned

using training instance labels. For example, Rastegari et al. [35]

proposed predictable dual-view hashing which added the idea of

support vector machines (SVMs) to hash learning. Liu et al. [27]

presented a kernel-based supervised hashing (KSH) algorithm that

needed a limited amount of label information, i.e., dissimilar and

similar instance pairs. Other supervised data-dependent hashing

methods include linear discriminant analysis based hashing (LDA-

Hash) [41] and fast supervised hashing using graph cuts and de-

cision trees (FastHash) [23, 24]. In our opinion, ranking-based al-

gorithms [33] in which the supervised information are composed

of ranking labels such as triplets are also part of the supervised

hashing algorithms.

Multimodal hashing: It includes cross-modal hashing and

multi-source hashing. In cross-modal hashing [16], the query de-

notes one modalitywhile the output denotes another modality. For

instance, given a text query, images are returned which represent

the text. In multi-source hashing [39, 45], it is assumed that all

views are given for a query and the goal is to learn better hash

codes than unimodal hashing by fully utilizing all these views. Thus,

both cross-modal hashing and multi-source hashing utilize multi-

modal information [5]. However, they are utilized in di�erent situ-

ations and cross-modal hashing may have wider applications than

multi-source hashing in real applications.

Deep learning-based hashing: Many algorithms have been

proposed over the past few years, some of which have been suc-

cessfully applied to many real applications such as image retrieval,

action recognition, and image classi�cation. As far as we know,

semantic hashing [36] is the �rst to use deep learning for hashing.

This seminal work used the stacked-restricted Boltzmannmachine

(RBM) to learn compact binary codes for visual search. However,

the model was complicated and needed pre-training, which is in-

e�cient in real applications. Some other related algorithms can be

found in [25, 40].

In general, hash codes consist of -1 and 1 or 0 and 1. The discrete

constraints imposed on the binary codes lead to complex binary

optimization problems, which are generally NP-hard. To facilitate

the optimization in hash code learning, most hashing algorithms

�rst do not take into consideration the discrete constraints, then

solve a relaxed and continuous problem, and �nally turn real val-

ues into the approximate binary codes by thresholding (or quanti-

zation). This relaxation skill greatly simpli�es the original compli-

cated mixed integer optimization problem. However, the approxi-

mate solution is apparently suboptimal, often of low quality, and

reduces the e�ectiveness of the �nal binary code. It is possibly due

to the accumulated quantization error, especially when learning

long binary codes. Most existing hashing methods do not take into

consideration the signi�cance of discrete optimization. Shen et al.

[37] proposed a novel supervised discrete hashing (SDH) method

that directly learned the binary codes without relaxation. To fully

utilize label information, SDHwas formulated as a least squares re-

gression that regressed the corresponding label on each hash code.

Luo et al. [29] proposed robust discrete code modeling for SDH.

Gui et al. [11] proposed SDH with relaxation (SDHR).

1.3 Summary of Contribution

Least squares regression (LSR) is a widely-utilized statistical analy-

sis method, which has been successfully used in many data mining

and machine learning tasks, such as classi�cation, clustering, di-

mensionality reduction, and multi-view learning. However, the or-

dinary LSR is sensitive to outliers [32], which motivates us to con-

sider strategies for enhancing the robustness in SDH. To this end,

we propose a robust SDHmodelwhich uses robustM-estimator [26]

and can be de�ned such as Welsch M-estimator and Cauchy M-

estimator. Furthermore, the original LSR utilize the label matrix

as the regression target, which is �xed. To increase the �exibility,

we add a rotation matrix to the label matrix. The rotation matrix

is solved through optimization which is more �exible and maybe

more accurate. We name our algorithm “Robust Rotated Super-

vised Discrete Hashing” (R2SDH).

The rest of the paper is organized as follows: Section 2 brie�y in-

troduces supervised discrete hashing. Section 3 presents the R2SDH.

Section 4 reports on our experimental results. Finally, Section 5

concludes the paper.

2 REVIEW OF SUPERVISED DISCRETE
HASHING (SDH)

We brie�y review the related work SDH [37] in this section. Given

n (See Table 1 for the notations used in this paper) examples X =

{xi }
n
i=1, our aim is to learn the corresponding hash codes B =

{bi }
n
i=1 ∈ {−1, 1}n×l to retain their similarities in the original

space, where the i-th row vector bi is the l-bits hash codes for xi .

The label matrix is denoted as Y = {yi }
n
i=1 ∈ Rn×c , where c de-

notes the number of classes. The term yik is the kth element of yi
and yik = 1 if xi is from class k and 0 otherwise.



Table 1: Notation

Symbol Description

X ∈ Rn×d the data matrix

xi ∈ R
1×d the i-th example

B ∈ Rn×l the hash codes

bi ∈ R
1×l the hash code for xi (the i-th row vector of B)

Y ∈ Rn×c the class labels of all training examples

yi ∈ R
1×c the i-th row vector of the label matrix Y

P ∈ Rm×l the projection matrix for the nonlinear embedding

W ∈ Rl×c the projection matrix for the hash code

R ∈ Rc×c the rotation matrix

n the training example size: the number of all training instances

l the hash code length

c the number of classes

F (·) the nonlinear embedding to approximate the hash code

m the number of anchor points

{aj }
m
i=1 randomly selectedm anchor points from the training instances

ϕ (·) them-dimensional vector obtained by the kernel function

δ the kernel parameter of last term of SDH’s objective function

д () the robust M-estimator

σ2 the kernel width of the robust M-estimator

r the Hamming radius

SDH’s objective function is de�ned as:

min
B,F ,W

n
∑

i=1

‖yi − biW ‖22 + λ ‖W ‖2F +v

n
∑

i=1

‖bi − F (xi )‖
2
2 (1)

s .t . ∀i bi ∈ {−1, 1}l ,

which can be written, equivalently, as

min
B,F ,W

‖Y − BW ‖2F + λ ‖W ‖2F +v ‖B − F (X )‖2F (2)

s .t . B ∈ {−1, 1}n×l ,

where ‖·‖F is the matrix Frobenius norm andW is the projection

matrix. The �rst term of (2) is the least squares regression, which

is used to regress the corresponding class label on each hash code.

The second term of (2) is used for regularization. F (·) in the last

term of (2) is an easy yet useful nonlinear embedding to approxi-

mate the hash code

F (x) = ϕ (x) P , (3)

whereϕ (x) is anm-dimensional vector acquired by the RBF kernel:

ϕ (x) = [exp

(

−
‖x − a1‖

2

δ

)

, · · · , exp

(

−
‖x − am ‖2

δ

)

]. (4)

The terms {aj }
m
j=1 are randomly selected m anchor points from

the training instances, and δ is the Gaussian kernel width parame-

ter. The matrix P ∈ Rm×l projects ϕ (x) onto the low-dimensional

space. Similar formulations as equation (3) are widely adopted in

such as binary reconstructive embedding (BRE) [15] and kernel-

based supervised hashing (KSH) [27].

The reason why a Gaussian kernel function is used is shown

as follows: when the underlying feature embedding for the kernel

is unknown, existing methods such as LSH do not apply for ker-

nelized data in high-dimensional space. Furthermore, the usage

of kernel generalizes such methods as LSH to adjust to arbitrary

kernels, making it possible to keep the algorithm’s sublinear time

similarity search guarantees for a large number of useful similarity

functions.

SDH’s optimization has three steps: the F-step to solve P , the

W-step to solveW , and the B-step to solve B:

F-step: If B is �xed, it is easy to solve the projection matrix P :

P =
(

ϕ(X )Tϕ (X )
)−1

ϕ(X )T B. (5)

W-step:W is easily computed and has a closed-form solution

by �xing B:

W =
(

BTB + λI
)−1

BTY . (6)

B-step: By �xing all other variables, [37] proposed solving B it-

eratively through a “discrete cyclic coordinate descent procedure”.

3 R2SDH: ROBUST ROTATED SUPERVISED
DISCRETE HASHING

In this section, we introduce our proposed method in detail.

3.1 Correntropy

As using the ordinary least square regression might be sensitive to

outliers, in this study, we adopt the idea of “correntropy” [26] in

order to increase robustness of the hashing procedure. Speci�cally,

we modify the original SDH formulation as follows:

min
B,F ,W

∑n

i=1
д

(

(Y − BW )i
)

+ λ ‖W ‖2F +v ‖B − F (X )‖2F (7)

s .t . B ∈ {−1, 1}n×l

where we recall (Y − BW )i is the i-th row of (Y − BW ). The term

д () in (7) is the robust M-estimator and can be de�ned such as

Welsch M-estimator and Cauchy M-estimator. In this study, we fo-

cus on the Welsch M-estimator:

д (x) = 1 − exp

(

−
‖x ‖22

σ2

)

, (8)

where σ2 is the kernel width. We will describe a procedure for

determining σ2.

3.2 R2SDH: Robust Rotated Supervised Discrete
Hashing

If we rotate the label matrix, the distance between the code words

of di�erent classes remains the same. For example, for binary clas-

si�cation, the code words for the �rst class and second class are

y1 = [1 0] (Fig. 1) and y2 = [0 1], respectively. If we randomly

rotate y1 and y2 clockwise or counterclockwise, the distance be-

tween y1 and y2 remains the same. Therefore, we add rotation to

(7) to obtain more �exibilities. R2SDH’s objective function is

min
B,F ,W ,R

∑n

i=1
д

(

(YR − BW )i
)

+ λ ‖W ‖2F +v ‖B − F (X )‖2F (9)

s .t . B ∈ {−1, 1}n×l ,RRT = I ,

where R is a rotation matrix.
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Figure 1: Random rotation of y1 and y2.

3.3 Optimization

The problem formulated in (9) is a mixed binary integer program

with �ve unknown variables. Alternating optimization is adopted

to solve the problem iteratively.

D-step: Based on half-quadratic optimization [12], the problem

(9) can be solved in an alternate minimization way as follows :

Di = exp
(

−


(YR − BW )i




2
2

/

σ2
)

, (10)

σ2 = θ(YR − BW )i
(

(YR − BW )i
)T

/

c (11)

where θ is a tuning parameter and we recall c is the number of

classes and (YR − BW )i is the i-th row of (YR − BW ).

In the next step, we need to solve the following program:

min
B,F ,W ,R

tr
(

(YR − BW )TD (YR − BW )
)

+λ ‖W ‖2F +v ‖B − F (X )‖2F
s .t . B ∈ {−1, 1}n×l ,RRT = I ,

(12)

where tr () is the trace norm and D is a diagonal matrix and the

i-th diagonal element is Di . The problem (12) can be solved with

regard to B, F ,W , and R, respectively, by �xing the other variables.

W-step: For �xed B, F , and R,W can be solved by setting the

derivative of (12) to zero. Therefore,W has a closed-form solution

as following:

W =
(

BTDB + λI
)−1

BTDYR. (13)

R-step: For �xed B, F , andW , we rewrite (12) as

min
R





D1/2 (YR − BW )







2

F

s .t . RRT = I .
(14)

Theorem1. Suppose the singular value decompositionofYTDBW

is UΣVT , the closed form solution of R is R = UVT .

Proof: The Lagrange function is

L(R,A) =




D1/2 (YR − BW )







2

F
+ tr

(

A
(

RRT − I
))

, (15)

which equals

L(R,A) = tr
((

RTYT −W T BT
)

D (YR − BW )
)

+tr
(

A
(

RRT − I
))

= tr
(

YTDYRRT
)

− 2tr
(

WT BTDYR
)

+tr
(

RTAR
)

+ const ,

(16)

where A ∈ Rc×c is the Lagrange multiplier and is a symmetric

matrix. Since RRT = RT R = I , (16) is equal to

L(R,A) = −2tr
(

WT BTDYR
)

+ tr
(

RTAR
)

+ const . (17)

By setting the derivative of L(R,A) with respect to R to zero, we

have

∂L(R,A)

R
= −YTDBW +AR = 0. (18)

Therefore, we get

R = A−1YTDBW . (19)

Since RRT = I , we obtain

A−1YTDBWWT BTDYA−1
= I . (20)

Thus, we have

A =

(

YTDBW
(

YTDBW
)T

)1/2

. (21)

By substituting (21) in (19), we obtain

R =

(

YTDBW
(

YTDBW
)T

)−1/2

YTDBW (22)

=

(

UΣVTVΣUT
)−1/2

UΣVT

= UVT .

This completes the proof. �

B-step: In order to solve B, (12) can be rewritten as:

min
B

tr
(

(YR − BW )TD (YR − BW )
)

+v ‖B − F (X )‖2F (23)

s .t . B ∈ {−1, 1}n×l

which can be equivalently written as

min
B

tr
(

W T BTDBW
)

− 2tr (BTM) (24)

s .t . B ∈ {−1, 1}n×l ,

whereM = DYRW T
+vF (X ). Like in SDH [37], we also use the dis-

crete cyclic coordinate descent method is to solve B. Due to the D

matrix in the formulation, we can not simply use the result in [37]

via a straightforward matrix transformation.

Let bT be themth column of B,m = 1, · · · , l and B ′ the matrix

of B excluding bT ,w be themth row ofW andW ′ the matrix ofW

excludingw . Similarly, let q them column ofM andM ′ the matrix

M excluding q. Then we have

tr
(

W T BTDBW
)

= tr
( (

(W ′)T (B ′)T +wT b
)

D
(

B ′W ′
+ bTw

))

= const + tr
(

wT bDbTw
)

+ 2tr
(

bDB ′W ′wT
)

.

(25)



Since bDbT =
∑

i Dib
2
i =

∑

i Di where bi is the i-th element of b ,

bDbT is a constant.

Similarly, since BTM =

[

(B ′)TM ′ (B ′)Tq

bM ′ bq

]

, we have

tr (BTM) = const + tr (bq). (26)

Therefore, (24) is equal to

min tr (b
(

DB ′W ′wT − q
)

)

s .t . b ∈ {−1, 1}1×l .
(27)

The solution to (27) is

b = siдn
(

q − DB ′W ′wT
)T
. (28)

F-step: This step is the same as that of SDH. The pseudocode

of R2SDH is shown in Algorithm 1.

Algorithm 1 Robust Rotated Supervised Discrete Hashing

(R2SDH)

Inputs: training data matrix X = {xi }
n
i=1; label matrix Y =

{yi }
n
i=1; hash code length l ; parameter λ; maximum iteration

number t .

Output: hash codes {bi }
n
i=1 ∈ {−1, 1}n×l

Randomly selectm instances {aj }
m
i=1 from the training data and

obtain the ϕ (x) through the Gaussian kernel function;

Initialize B as a {−1, 1}n×l matrix randomly;

Initialize D and R as identity matrixes;

Use (13) to initializeW ;

Use (5) to initialize P ;

repeat

D-step Use (10) to solve D;

B-stepUse discrete cyclic coordinate descent to solve B based

on (28) ;

W-step Use (13) to solveW ;

F-step Use (5) to solve P ;

R-step Use (22) to solve R;

until convergence

4 EXPERIMENTS

In this section, we investigate the performance of our proposed

R2SDH algorithm. All of our experiments have been conducted on

a server with an Intel Xeon processor (2.80 GHz), 128 GB RAM,

and con�gured with Microsoft Windows Server 2008 and MAT-

LAB 2014b.

We conducted experiments using three large-scale image datasets,

MNIST1, CIFAR-102, andNUS-WIDE3 . The proposed algorithmR2SDH

is compared with representative hashing algorithms such as BRE

[15], SDHR[11], KSH [27], SSH [43], FastHash [23, 24], AGH [28],

and IMH [38] with t-SNE [30]. For iterative quantization (ITQ)

[9, 10], we utilize both its unsupervised version PCA-ITQ and su-

pervised version CCA-ITQ. Canonical correlation analysis (CCA)

1http://yann.lecun.com/exdb/mnist/
2https://www.cs.toronto.edu/~kriz/cifar.html
3http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

is utilized as the preprocessing for CCA-ITQ. We utilize the pub-

lic MATLAB codes and the parameters suggested by the authors.

More speci�cally, for SDH and R2SDH, λ and v are empirically set

to 1 and 1e-5, respectively; the maximum iteration number t is set

to 5. The parameter θ in R2SDH is estimated by 10-fold cross val-

idation. For AGH, IMH, SDH, and R2SDH, we use 1,000 randomly

sampled anchor points.

The experimental results are reported based on Hamming rank-

ing (the mean of average precision, MAP), accuracy, training time,

and hash lookup including precision, recall, F-measure of Ham-

ming radius two (@r =2).We set the Hamming radius r to be 2 as in

[7, 37]. The F-measure’s de�nition is 2×precision×recall/(precision

+ recall). The following evaluation metric is also used to measure

the performance of the various methods: precision at N samples

(precision@sample =N ), which is de�ned as the percentage of true

neighbors among the top N retrieved samples. We set N to 500 as

in [7]. Note that a query is considered to be a false example if no in-

stance is returned when calculating precisions. Ground truths are

the example labels.

4.1 Results on the MNIST Dataset

MNIST has 70,000 784-dimensional handwritten digit images from

‘0’ to ‘9’. Every image is cropped and normalized to 28×28 pixels.

This dataset is split into a test set with 1,000 instances and a train-

ing set with all remaining instances. The experimental results on

MNIST are listed in Table 2. R2SDH outperforms the othermethods

in terms of precision@r=2, recall@r=2, F-measure@r=2, MAP, and

accuracy, while PCA-ITQ performs best in terms of training time.

However, R2SDH’s overall performance is much better than that

of PCA-ITQ. For example, R2SDH’s F-measure@r=2 and MAP are

more than four times and two times better than that of PCA-ITQ

on this situation. Moreover, the precision@sample=500, precision

of Hamming radius two, recall of Hamming radius two, F-measure

of Hamming radius two, MAP, and accuracy curves are plotted in

Figs. 2-7, respectively. Only some methods are presented due to

space limitations. R2SDH performs better than the other methods

in most cases. Moreover, R2SDH particularly performs better than

the other methods in terms of precision@sample = 500.
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Figure 2: Precision@sample=500 on theMNIST data set with

di�erent number of hashing bits.
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Table 2: Experimental results on the MNIST data set when the number of hashing bits is 16.

Method precision@r=2 recall@r=2 F-measure@r=2 MAP accuracy training time (sec)

R2SDH 0.9373 0.8801 0.9078 0.9364 0.967 52.3

SDH 0.8908 0.8569 0.8735 0.9276 0.925 39.1

SDHR 0.9301 0.8693 0.8987 0.9206 0.955 78.4

BRE 0.5741 0.1263 0.2071 0.3646 0.701 2884.7

KSH 0.8869 0.6287 0.7358 0.8670 0.906 318.8

SSH 0.3070 0.4235 0.3559 0.3569 0.525 68.6

CCA-ITQ 0.8136 0.4875 0.6097 0.7515 0.863 6.6

FastHash 0.5560 0.2310 0.3264 0.5253 0.588 1017.4

PCA-ITQ 0.6965 0.1107 0.1910 0.4260 0.732 4.5

AGH 0.6132 0.4712 0.5329 0.5995 0.785 6.8

IMH 0.6694 0.4238 0.5190 0.5996 0.813 32.1
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Figure 3: Precision of Hamming radius two on the MNIST

data set with di�erent number of hashing bits.
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Figure 4: Recall of Hamming radius two on the MNIST data

set with di�erent number of hashing bits.

4.2 Results on the CIFAR-10 Dataset

As a subset of the celebrated 80M tiny image collection [42], there

are 60,000 images onCIFAR-10 from 10 classes with 6,000 instances
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Figure 5: F-measure of Hamming radius two on the MNIST

data set with di�erent number of hashing bits.
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Figure 6: MAP on the MNIST data set with di�erent number

of hashing bits.

for every class. Every image in this dataset is represented as a 512-

dimensional GIST feature vector [34]. The dataset is split into a

training set with 59,000 instances and a test set with all remain-

ing instances. The experimental results on CIFAR-10 are listed in
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Figure 7: Accuracy on the MNIST data set with di�erent

number of hashing bits.

Table 3 when the number of hashing bits is 32. Precision@r=2,

recall@r=2, F-measure@r=2, MAP, accuracy, and training time, are

reported. For SSH, 5,000 labeled examples are used for similarity

matrix construction. R2SDH performs better than SDH in terms

of precision@r=2, recall@r=2, F-measure@r=2, MAP, and accu-

racy. For instance, the recall@r=2 of R2SDH is 1.02-times higher

than that of SDH. Furthermore, from the last column in Table 3, it

can be seen that the training time of both R2SDH and SDH are

about one minute, which is quite e�cient. In contrast, it takes

FastHash and KSH about 20 minutes and more than 40 minutes to

train, respectively. Speci�cally, the training of R2SDH is about 16-

times and 36-times more e�cient than FastHash and KSH, respec-

tively, on this situation. SDHR, SSH, CCA-ITQ, PCA-ITQ, AGH,

and IMH are also very e�cient; however, R2SDH generally out-

performs them. The precision at 500 instances (precision@sample

= 500), precision@r=2, and accuracy versus the number of hashing

bits are plotted in Figs. 8-10, respectively. Due to space limitations,

only some algorithms are illustrated in the corresponding �gure. In

regard to precision@r=2, R2SDH performs better than the other al-

gorithms when the number of hashing bits is larger than 32, and

KSH outperforms the other methods when the number of hashing

bits is 16. R2SDH performs the best according to precision at 500

instances (precision@sample = 500) and accuracy, demonstrating

the e�ectiveness of R2SDH.

4.3 Results on the NUS-WIDE Dataset

The NUS-WIDE data set has about 270,000 images collected from

Flickr. NUS-WIDE contains 81 ground truth concept labels, with

every image having multiple labels. The true neighbors of a query

are de�ned as the images sharing at least one labels with the query

image. We utilize the provided 500-dimensional bag-of-words fea-

tures. As in [28], the 21 most frequent label are used for testing.

For each class, 100 images are uniformly sampled for the query set

and the remaining images are used for training. For this large data-

base, all the training examples are utilized for the e�cient R2SDH,

SDH, and CCA-ITQ. For BRE,MLH and KSH, 5,000 images are sam-

pled for training. Experimental results are given in Table 4. Since

SDHR can not solve multi-label learning and can only be used for
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Figure 8: Precision@sample=500 on the CIFAR-10 data set

with the number of hashing bits from 16 to 128.
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Figure 9: Precision of Hamming radius two on the CIFAR-10

data set with the number of hashing bits from 16 to 128.
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Figure 10: Accuracy on the CIFAR-10 data set with the num-

ber of hashing bits from 16 to 128.



Table 3: Experimental results on the CIFAR-10 data set when the number of hashing bits is 32.

Method precision@r=2 recall@r=2 F-measure@r=2 MAP accuracy training time (sec)

R2SDH 0.5134 0.1622 0.2465 0.4417 0.643 72.3

SDH 0.5121 0.1586 0.2422 0.4396 0.641 47.0

SDHR 0.5169 0.1445 0.2259 0.4408 0.627 61.6

BRE 0.2423 0.0122 0.0232 0.1505 0.353 232.4

KSH 0.3244 0.0312 0.0569 0.4421 0.567 2639.3

SSH 0.2229 0.1097 0.1470 0.1894 0.386 32.9

CCA-ITQ 0.4299 0.0426 0.0775 0.3330 0.553 7.1

FastHash 0.4358 0.0899 0.1490 0.6009 0.657 1200

PCA-ITQ 0.1801 4.8e-4 9.5e-4 0.1714 0.433 4.8

AGH 0.2775 0.0058 0.0113 0.1547 0.357 7.6

IMH 0.2300 0.0244 0.0441 0.1724 0.329 45.6

Table 4: Experimental results on the NUS-WIDE database when the number of hashing bits is 64.

Method precision@r=2 recall@r=2 F-measure@r=2 MAP training time (sec)

R2SDH 0.3605 0.9950 0.5293 0.4918 890.7

SDH 0.4957 0.3025 0.3757 0.5609 593.8

BRE 0.0129 6.8375e-7 1.3674e-6 0.5022 41660.2

KSH 0.2528 0.0329 0.0582 0.7334 4142.7

SSH 0.4405 0.3713 0.4030 0.5786 114.4

CCA-ITQ 0.2839 8.0079e-4 0.0016 0.6127 46.1

FastHash 0.2043 0.0032 0.0062 0.5253 12564.7

PCA-ITQ 0.0944 0.0026 0.0051 0.5556 31.6

AGH 0.4500 0.0040 0.0080 0.5256 21.6

IMH 0.4434 0.0117 0.0228 0.5478 61.1

single-label learning, there is no result for SDHR in Table 4. R2SDH

performs the best in two evaluation metrics, demonstrating the ef-

fectiveness of our method on the retrieval task of multi-label data.

5 CONCLUSION

In this paper, we propose a data-dependent (learning-based) hash-

ing algorithm named “robust rotated supervised discrete hashing"

(R2SDH) by extending “supervised discrete hashing" (SDH). R2SDH

used correntropy rather than least squares regression as in SDH.

Thus, R2SDH is more robust than SDH. Furthermore, R2SDH used

rotation for the label matrix, which o�er additional �exibility. As

expected, the R2SDH’s performance is better than that of SDH in

most cases. Real-world image classi�cation and digit recognition

experiments demonstrate the e�ectiveness and e�ciency of the

proposed method.

Hashing algorithms can reduce computational costs, but the costs

are still high for large-scale high-dimensional data. How to speed

hashing algorithms such as R2SDH is an issueworth studying. There

are some possible ways, for instance, selecting representative in-

stances to represent each class rather than using all instances.
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