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Abstract
In this paper, we present a hierarchical Bi-Directional LSTMs
neural network designed for the dialogue breakdown detection
challenge 3 (DBDC3). The task of DBDC3 is to detect inappro-
priate utterances that lead to dialogue breakdowns in dialogue
systems. By making use of the hierarchical structure of dia-
logue systems, our model is context-aware and can be trained
directly from word sequences to breakdown labels in an end-
to-end manner. Thus our model is generic and requires no fea-
ture engineering, making it applicable to different dialogue sys-
tems. We evaluate our model on 4 dialogue systems provided
by the DBDC3 datasets. Experiment results show that our pro-
posed model achieves high accuracy, and outperforms the CRF
baseline in terms of both classification-related and distribution-
related metrics without careful fine-tuning.
Index Terms: Bi-LSTM, hierarchical architecture, end-to-end,
dialogue breakdown detection, dialogue systems

1. Introduction
With the increasing pervasiveness of smart phones and smart
devices, spoken dialogue systems are gaining ever growing at-
tention from both academic and industry. Spoken dialogue sys-
tem is considered as a candidate for next generation human-
machine interface. A lot of spoken dialogue system based assis-
tants have emerged, including Siri, Google Assistant, Amazon
Echo, Cortana and Xiaoice. The literature of dialogue system
research can be broadly classified into two categories, one that
is aimed at helping user to gain knowledge and providing use-
ful services and one that can chat with users without complet-
ing any specific tasks. The former one is usually called task-
oriented or goal-oriented dialogue system [1] and the later chat-
oriented dialogue system [2, 3]. Although dialogue systems are
improving substantially, the user experience of such systems are
still unsatisfactory. The systems fail to understand the intention
of the users’ utterance and respond inappropriately occasion-
ally. We call this dialogue breakdowns [4] and detection of them
is crucial to improve user experience [5]. This paper focuses on
chat-oriented dialogue breakdowns.

We now briefly introduce chat-oriented dialogue system
and point out the difficulties inherent to the dialogue system
problem that could result in breakdowns. Chat-oriented di-
alogue system provides the ability to chat with user, mimic
the conversation between two people. The objective of chat-
oriented dialogue system is to respond properly and convinc-
ingly to users’ utterances. Recent chat-oriented dialogue sys-
tems usually adopt neural machine translation architecture [6, 7]
and are trained in an end-to-end manner.

The design and implementation of dialogue system has
evolved from labor-intensive rule-based systems [8] to data
driven approaches [1, 2, 3, 9]. Recent advance of deep learn-
ing has inspired many applications of neural models to dialogue
systems. Both selection based [3, 10] and generation based

methods [2, 11] have been proposed to build chat-oriented dia-
logue systems.

The user experience of spoken dialogue systems is still far
from satisfactory. The system usually fails to understand the
intention of the user, especially during a multi-turn conversa-
tion. When the systems fail to understand the intention of a
user, it will produce response based on its false understanding,
which could result in obviously irrelevant and inappropriate re-
sponses. The user experience would be unpleasant at least un-
der such circumstances. If we could detect such system break-
downs, i.e. that the system is producing irrelevant or inappro-
priate responses, we could take precautions and ask the user to
reformulate his/her questions.

The causes of breakdowns in current dialogue systems are
multi-aspects. In chat-oriented dialogue systems, take genera-
tion based system for example, the encoder could fail to encode
an utterance correctly and the decoder could produce irrelevant
responses. Variability and ambiguity of natural language also
cause difficulties in understanding. Often the true meaning can
only be inferred in a given context. In addition, in spoken di-
alogue system, the input is often the transcription produced by
automatic speech recognition module, which may produce er-
roneous sentences.

Detect the dialogue breakdowns and handle them properly
could be a valuable alternative way to build better dialogue sys-
tem because the afore-mentioned causes for unsatisfactory di-
alogue system performance is unlikely to be solved very soon.
In this paper, we propose a novel hierarchical Bi-LSTM based
method to detect the system breakdowns in an end-to-end man-
ner. In section 2 we describe the dialogue breakdown detection
task. We present the model in detail in section 3. The emperical
analysis is conducted in section 4 and we conclude our method
in section 5.

2. Task Description
The dialogue system breakdown is defined as a situation in
a dialogue where users cannot proceed with the conversa-
tion. The task of Dialogue Breakdown Detection Challenge
3 (DBDC3) [12, 13] is to detect whether the system utterance
causes dialogue breakdowns. The developed dialogue break-
down detector is required to output both a dialogue breakdown
label and a distribution of these labels. Due to the subjective na-
ture of deciding whether the user can proceed with the conver-
sation, the states of system breakdowns includes the following
three labels:

• Not a breakdown (NB): The conversation can continue
easily.

• Possible breakdown (PB): It is difficult to continue the
conversation smoothly.

• Breakdown (B): It is difficult to continue the conversa-
tion.



Table 1: Statistics of English datasets

TKTK IRIS CIC YI
train test train test train test train test

No. of sessions 100 50 100 50 115 50 100 50
No. of annotators 30 30 30 30 30 30 30 30

NB (Not a Breakdown) 35.1% 44.3% 32.9% 34.5% 28.9% 29.1% 34.8% 35.4%
PB (Possible Breakdown) 27.6% 29.2% 27.8% 29.3% 29.8% 39.3% 36.1% 40.3%

B (Breakdown) 37.3% 26.5% 39.4% 36.2% 41.3% 31.6% 29.1% 24.3%

2.1. Datasets

DBDC3 distributed multi-turn human-system dialogue session
datasets along with human annotated breakdown labels. Eight
session datasets from different chat-oriented dialogue systems
are available, among which four are English datasets and four
are Japanese datasets. In this paper, we only focus on English
datasets.

The four English datasets are: TKTK, IRIS, CIC and YI.
Each dataset is separated into training data for model develop-
ment and test data for model testing. All dialogue sessions are
20 or 21 utterances long and include 10 system responses. Ta-
ble 1 summarizes the statistics of the English datasets.

2.2. Evaluation Metrics

DBDC3 uses two types of evaluation metrics: classification-
related metrics and distribution-related metrics.

2.2.1. Classification-related Metrics

classification-related metrics are evaluated on breakdown labels
predicted by model against the gold labels determined by major-
ity voting of human annotations. The metrics used by DBDC3
are as follows:

• Accuracy: The number of correctly classied labels di-
vided by the total number of labels to be classied.

• Precision, Recall, F-measure (B): The precision, recall,
and F-measure for the classication of the B labels.

• Precision, Recall, F-measure (PB+B): The precision, re-
call, and F-measure for the classication of PB + B labels;
that is, PB and B labels are treated as a single label.

2.2.2. Distribution-related Metrics

Distribution-related metrics evaluate the similarity of the pre-
dicted and gold breakdown distributions. The metrics used by
DBDC3 are as follows:

• JS Divergence (NB,PB,B): Distance between the pre-
dicted distribution of the three labels and that of the gold
labels calculated by Jensen-Shannon Divergence.

• JS Divergence (NB,PB+B): JS divergence when PB and
B are regarded as a single label.

• JS Divergence (NB+PB,B): JS divergence when NB and
PB are regarded as a single label.

• Mean Squared Error (NB,PB,B): Distance between the
predicted distribution of the three labels and that of the
gold labels calculated by mean squared error.

• Mean Squared Error (NB,PB+B): Mean squared error
when PB and B are regarded as a single label.
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Figure 1: Hierarchical Bi-Directional LSTMs model architec-
ture.

• Mean Squared Error (NB+PB,B): Mean squared error
when NB and PB are regarded as a single label.

However, the results may not be as easily interpretable as
the classication-related metrics because they do not directly
translate to detection performance.

3. Proposed Model
In this section, we describe the motivation and components of
Hierarchical Bi-Directional LSTMs (H-Bi-LSTM) neural net-
work in detail. The overall architecture of H-Bi-LSTM model
is shown in Figure 1.

3.1. Motivation

A well-known and effective neural network called LSTM is de-
signed to model sequence dependence and has achieved state-
of-the-art in many NLP tasks. As a dialogue utterance is com-
posed by sequence of words, we use a Bi-LSTM to encode a
utterance by its corresponding words. Dialogue system inter-
acts with user in sequential order, and every system utterance
is generated by considering the history of the dialogue up the



Figure 2: Long Short-Term Memory Unit Structure.

latest turn. It is natural to abstract the process of dialogue in-
teractions as a sequence model. Thus we use another Bi-LSTM
over the utterance encoder for dialogue context encoding. The
architecture of our model mimics the hierarchical structure of
dialogue, and results in the name of the model. Besides, Our
model is designed to be truly end-to-end so that it can be easily
applied to different dialogue systems without modification, no
feature engineering or extra task-specific resources are required.

3.2. Bi-Directional LSTM

Recurrent Neural Network (RNN) is a powerful model that
makes use of sequential information. Unfortunately, in prac-
tice standard RNN often fails to capture long term dependen-
cies due to gradient vanishing/exploding [14, 15]. Numerous
variants of RNN are proposed to address this problem for RNN,
among which LSTM [16] is proved to work amazingly well and
is widely applied to various real-world problems.

3.2.1. LSTM Unit

Basically, a LSTM unit consist of a memory cell and three mul-
tiplicative gates: input gate, forget gate and output gate, which
control the proportions of information to flow into or out of the
memory. Figure 2 gives the basic structure of an LSTM unit.

Formally, the formulas to update an LSTM unit at time t
are given by:

it = σ(Wiht−1 +Uixt + bi) (1)
ft = σ(Wfht−1 +Ufxt + bf ) (2)
c̃t = tanh(Wcht−1 +Ucxt + bc) (3)
ct = ft � ct−1 + it � c̃t (4)
ot = σ(Woht−1 +Uoxt + bo) (5)
ht = ot � tanh(ct) (6)

where σ denotes sigmoid function and � denotes element-wise
product. xt is the input vector at time t, ht is hidden state vector
at time t. Ui,Uf ,Uo,Uc denote weight matrices of input xt,
Wi,Wf ,Wo,Uc denote weight matrices of hidden state ht,
bi,bf ,bo,bc denote the corresponding bias vectors.

3.2.2. Bi-LSTM

For many sequence labelling tasks it is beneficial to have access
to both past and future information. A standard LSTM only
knows context of the past and nothing about the future. Bi-
directional LSTM (Bi-LSTM) [17] offers an elegant solution
to this problem, and has been proven to outperform unidirec-
tional LSTM consistently by previous work. The basic idea is
to present each sequence forwards and backwards to two sepa-
rate recurrent hidden layers to capture past and future informa-
tion, respectively. Then the two hidden states are concatenated
to form the final output. The output at time t of Bi-LSTM is
calculated as follows:

−→
h t =

−−−→
LSTM(xt) (7)

←−
h t =

←−−−
LSTM(xt) (8)

ht =
−→
h t ⊕

←−
h t (9)

where ⊕ denotes vector concatenation,
−−−→
LSTM,

←−−−
LSTM denote

the forward LSTM and backward LSTM, respectively.
−→
h t,
←−
h t

denote the corresponding forward and backward outputs.

3.3. Model Architecture

H-Bi-LSTM consists of components that extract semantic rep-
resentations of dialogues from low-level to high-level: word
embedding, utterance encoder and context encoder. Context
representations are then fed into a fully-connected layer and
with softmax activation to output probabilities over possible
breakdown labels.

3.3.1. Word Representation

Each word in the vocabulary is represented as a fixed-length
semantic vector through an embedding matrix Ww. Due to the
limited training data of DBDC3, We use the pre-trained GloVe
embeddings [18] for word representation to prevent overfitting.

3.3.2. Utterance Representation

We use a Bi-LSTM for utterance encoding. Given an utterance
with N words [w1,w2, . . . ,wN ], we first embed the words
through Ww to get word embeddings [x1;x2; . . . ;xN ]. Word
embeddings of the utterance are then fed into the Bi-LSTM en-
coder as inputs and the final output hN is regarded as the cor-
responding utterance embedding uttr. User utterance embed-
ding and system utterance embedding of the same dialogue turn
are concatenated together.

3.3.3. Context Representation

Similarly, we use another Bi-LSTM as dialogue context en-
coder. Given the utterance representations of a dialogue with
M turns [uttr1;uttr2; . . . ;uttrM ], we apply the encoder
over them to get the context representations of every turn
[c1; c2; . . . ; cM ].

3.3.4. Breakdown Detection

The context embedding c can be used as high-level features
to calculate dialogue breakdown scores, wb,bb are the corre-
sponding weight matrix and bias, the scores are then translated
to probabilities via a softmax normalization:

p̂ = softmax(Wbc+ bb) (10)



Table 2: Evaluation results on DBDC3 test datasets (English).

Accu- F1 F1 JSD(NB, JSD(NB, JSD(NB+ MSE(NB, MSE(NB, MSE(NB+
Model racy (B) (PB+B) PB,B) PB+B) PB,B) PB,B) PB+B) PB,B)

CRF Baseline 0.4285 0.3543 0.7622 0.4409 0.2687 0.2985 0.2185 0.2171 0.2578
Majority Baseline 0.3720 0.3343 0.8927 0.0393 0.0237 0.0257 0.0224 0.0278 0.0264

PLECO run1 0.2950 0.3636 0.8744 0.0714 0.0427 0.0535 0.0415 0.0455 0.0632
RSL17BD run2 0.4310 0.3201 0.8400 0.0412 0.0256 0.0225 0.0241 0.0301 0.0246

NCDS run1 0.3605 0.2076 0.3458 0.0412 0.0248 0.0254 0.0237 0.0287 0.0270
KTH run1 0.3375 0.3487 0.8423 0.4445 0.2343 0.2058 0.2240 0.1752 0.1476

SAM2017 run1 0.4060 0.2413 0.2160 0.2823 0.2377 0.0805 0.1441 0.2652 0.0621
H-Bi-LSTM #1

(ours run1) 0.4295 0.3210 0.7627 0.0807 0.0438 0.0444 0.0471 0.0501 0.0497
H-Bi-LSTM #2

(offline test) 0.4595 0.3631 0.8049 0.0393 0.0231 0.0250 0.0228 0.0270 0.0276

3.3.5. Loss

We use cross entropy of the predicted distributions p̂ with re-
spect to true distributions p as the training loss:

L = −
∑
i

pi log(p̂i) (11)

4. Experiment
In this section, we evaluate the effectiveness of our model on the
four English dialogue session datasets as described in section 2.

4.1. Data Preparing

Before feeding data to our model, we perform the following
preparations:

• Each dialogue utterance is tokenized into words using
Stanfords CoreNLP toolkit [19] and words are converted
to lower case to keep consistent with the vocabulary of
GloVe word embeddings. Out-of-vocabulary words are
replaced with a special token 〈UNK〉. Utterances with
more than 50 words are truncated.

• Human annotated breakdown labels of every system ut-
terance are converted to probabilities, which will be re-
garded as the true distribution when calculating model
loss.

• For each dialogue dataset, we randomly split the training
data: 80% of data are used for training and the remaining
20% are used for validation.

4.2. Model Training

We use the same hyper-parameters which are determined by a
rough grid search for all the experiments. For word embed-
dings, we use the public available GloVe 100-dimensional em-
beddings trained on 6 billion words from Wikipedia and web
text. The dimension of both Bi-LSTM hidden states are 50.
To mitigate overtting, we apply dropout [20] layers on word
embeddings, utterance embeddings and context embeddings re-
spectively with 0.2 dropout probability. We choose Adam opti-
mizer to minimize the training loss with an initial learning rate
of 0.001 and batch size of 1. The model is trained 50 epochs for
parameter optimization.

4.2.1. True Distribution Setting

As mentioned above, we use cross entropy between distribution
predicted by our model and true distribution. In our experi-
ments, there are two settings for calculating true label distribu-
tion:

1. The probability of the most frequent dialogue breakdown
label is set to 1.0, and probabilities of other labels are set
to 0. (used in H-Bi-LSTM #1)

2. The true distribution is calculated by annotation counts
of each breakdown label divided by total annotation
counts. (used in H-Bi-LSTM #2)

For example, suppose a system dialogue turn is annotated
with NB:PB:B=1:3:4. In setting 1, the true distribution is [0, 0,
1]; In setting 2, the true distribution is [0.125, 0.375, 0.5].

H-Bi-LSTM models using true distribution setting 1 and 2
are named H-Bi-LSTM #1 and H-Bi-LSTM #2, respectively.
The results we submitted was generated by H-Bi-LSTM #1. Af-
ter the reference annotations of the test data were released, we
used H-Bi-LSTM #2 to do extra offline experiments.

4.3. Baselines

We compared H-Bi-LSTM with two baselines provided by
DBDC3: One is a CRF-based method. The detector labels ut-
terance sequences with the three breakdown labels. The fea-
tures used are words in the target utterance and its previous ut-
terances. The other one is simply a majority baseline which
outputs only the most frequent dialogue breakdown label in the
development set with averaged probability distributions.

4.4. Results and Discussion

The final results of our proposed model along with two base-
lines and five other teams are shown in Table 2. We only sub-
mitted one run of our model results(denoted as H-Bi-LSTM #1).
As can be seen from the table, H-Bi-LSTM #1 achieves a high
accuracy that outperforms the majority baseline by 15%, and
improves the distribution metrics by a huge margin comparing
to the CRF baseline. However, H-Bi-LSTM #1 is not perform-
ing good enough comparing to other teams, especially in turns
of F1 scores and all distribution-related metrics.

After carefully analyzing the results of H-Bi-LSTM #1, we
figure out the performance of H-Bi-LSTM #1 is badly hurt
by its true distribution setting. Thus, we set up extra of-
fline experiments(H-Bi-LSTM #2), results show that the per-
formance of our model is significantly improved. H-Bi-LSTM



#2 improves all the metrics comparing to H-Bi-LSTM #1 by a
huge margin, and outperforms all teams on 4 metrics. Besides,
F1(B), JSD(NB+PB,B) and MSE(NB,PB,B) of H-Bi-LSTM #2
are very closed to the best results. As from the table, teams with
good results in the classication-related metrics did not perform
as well in distribution-related metrics and vice versa, while H-
Bi-LSTM #2 can achieve good results in both metric categories.

The experiment results demonstrate the effectiveness and
robustness of our proposed model. However, there is still some
room for improvement comparing to the majority baseline, ei-
ther by hyper-parameters fine-tuning or model ensemble.

5. Conclusion
In this paper, we presents our proposed dialogue breakdown de-
tector for DBDC3. The model we used is in a novel hierarchical
Bi-LSTM neural network that can capture semantic represen-
tations of dialogues progressively from words and utterances.
Submitted results on DBDC3 test datasets demonstrate that our
model achieves a high accuracy, and outperforms the CRF base-
lines in several evaluation metrics. Extra offline experiments
showed that the performance of our model can be significantly
improved by using another true distribution setting. In the future
work, attention mechanism [21] can be integrated into H-Bi-
LSTM to help generate better representations, we believe this
will further improve the performance of the model.
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