
Video Paragraph Captioning Using Hierarchical Recurrent Neural Networks

Haonan Yu1∗ Jiang Wang3 Zhiheng Huang2∗ Yi Yang3 Wei Xu3

1Purdue University 2Facebook

haonanu@gmail.com zhiheng@fb.com

3Baidu Research - Institute of Deep Learning

{wangjiang03,yangyi05,wei.xu}@baidu.com

Abstract

We present an approach that exploits hierarchical Recur-

rent Neural Networks (RNNs) to tackle the video captioning

problem, i.e., generating one or multiple sentences to de-

scribe a realistic video. Our hierarchical framework con-

tains a sentence generator and a paragraph generator. The

sentence generator produces one simple short sentence that

describes a specific short video interval. It exploits both

temporal- and spatial-attention mechanisms to selectively

focus on visual elements during generation. The paragraph

generator captures the inter-sentence dependency by taking

as input the sentential embedding produced by the sentence

generator, combining it with the paragraph history, and

outputting the new initial state for the sentence generator.

We evaluate our approach on two large-scale benchmark

datasets: YouTubeClips and TACoS-MultiLevel. The exper-

iments demonstrate that our approach significantly outper-

forms the current state-of-the-art methods with BLEU@4

scores 0.499 and 0.305 respectively.

1. Introduction

In this paper, we consider the problem of video caption-

ing, i.e. generating one or multiple sentences to describe

the content of a video. The given video could be as gen-

eral as those uploaded to YouTube, or it could be as specific

as cooking videos with fine-grained activities. This ability

to generate linguistic descriptions for unconstrained video

is important because not only it is a critical step towards

machine intelligence, but also it has many applications in

daily scenarios such as video retrieval, automatic video sub-

titling, blind navigation, etc. Figure 1 shows some example

sentences generated by our approach.

The video captioning problem has been studied for over

one decade ever since the first rule-based system on describ-

ing human activities with natural language [23]. In a very

limited setting, Kojima et al. designed some simple heuris-

∗This work was done while the authors were at Baidu.

tics for identifying video objects and a set of rules for pro-

ducing verbs and prepositions. A sentence is then generated

by filling predefined templates with the recognized parts

of speech. Following their work, several succeeding ap-

proaches [26, 20, 21, 15, 3] applied similar rule-based sys-

tems to datasets with larger numbers of objects and events,

in different tasks and scenarios. With ad hoc rules, they

manually establish the correspondence between linguistic

terms and visual elements, and analyze the relations among

the visual elements to generate sentences. Among them, the

most complex rule-based system [3] supports a vocabulary

of 118 lexical entries (including 48 verbs and 24 nouns).

To eliminate the tedious effort of rule engineering when

the problem scales, some recent methods train statistical

models for lexical entries, either in a fully [10, 14, 24, 42] or

weakly [37, 36, 57, 55] supervised fashion. The statistical

models of different parts of speech usually have different

mathematical representations and training strategies (e.g.,

[14, 24]). With most of the manual effort gone, the train-

ing process exposes these methods to even larger datasets

(e.g., YouTubeClips [6] and TACoS-MultiLevel [36]) which

contain thousands of lexical entries and dozens of hours of

videos. As a result, the video captioning task becomes much

more challenging, and the generation performance of these

methods is usually low on these large-scale datasets.

Since then, inspiring results have been achieved by a re-

cent line of work [11, 48, 47, 32, 54, 56] which benefits

from the rapid development of deep neural networks, es-

pecially Recurrent Neural Network (RNN). Applying RNN

to translating visual sequence to natural language is largely

inspired by the recent advances in Neural Machine Transla-

tion (NMT) [1, 43] in the natural language processing com-

munity. The idea is to treat the image sequence of a video as

the “source text” and the corresponding caption as the target

text. Given a sequence of deep convolutional features (e.g.,

VggNet [40] and C3D [45]) extracted from video frames, a

compact representation of the video is obtained by: average

pooling [48, 32], weighted average pooling with an atten-

tion model [56], or taking the last output from an RNN en-

4584

A man is pouring oil into a pot. A dog is playing in a bowl.

The person opened the drawer.
The person took out a pot.
The person went to the sink.
The person washed the pot.
The person turned on the stove.

The person peeled the fruit.
The person put the fruit in the bowl.
The person sliced the orange.
The person put the pieces in the plate.
The person rinsed the plate in the sink.

Figure 1. Some example sentences generated by our approach. The first row shows examples trained on YouTubeClips, where only one

sentence is generated for each video. The second row shows examples trained on TACoS-MultiLevel, where paragraphs are generated.

coder which summarizes the feature sequence [11, 47, 54].

Then an RNN decoder accepts this compact representation

and outputs a sentence of a variable length.

While promising results were achieved by these RNN

methods, they only focus on generating a single sentence

for a short video clip. So far the problem of generating mul-

tiple sentences or a paragraph for a long video has not been

attempted by deep learning approaches. Some graphical-

model methods, such as Rohrbach et al. [36], are able to

generate multiple sentences, but their results are still far

from perfect. The motivation of generating a paragraph is

that most videos depict far more than just one event. Us-

ing only one short sentence to describe a semantically rich

video usually yields uninformative and even boring results.

For example, instead of saying the person sliced the pota-

toes, cut the onions into pieces, and put the onions and pota-

toes into the pot, a method that is only able to produce one

short sentence would probably say the person is cooking.

Inspired by the recent progress of document model-

ing [27, 28] in natural language processing, we propose a

hierarchical-RNN framework for describing a long video

with a paragraph consisting of multiple sentences. The idea

behind our hierarchical framework is that we want to ex-

ploit the temporal dependency among sentences in a para-

graph, so that when producing the paragraph, the sentences

are not generated independently. Instead, the generation of

one sentence might be affected by the semantic context pro-

vided by the previous sentences. For example, in a video

of cooking dishes, a sentence the person peeled the pota-

toes is more likely to occur, than the sentence the person

turned on the stove, after the sentence the person took out

some potatoes from the fridge. Towards this end, our hierar-

chical framework consists of two generators, i.e. a sentence

generator and a paragraph generator, both of which use re-

current layers for language modeling. At the low level, the

sentence generator produces single short sentences that de-

scribe specific time intervals and video regions. We exploit

both temporal- and spatial-attention mechanisms to selec-

tively focus on visual elements when generating a sentence.

The embedding of the generated sentence is encoded by the

output of the recurrent layer. At the high level, the para-

graph generator takes the sentential embedding as input, and

uses another recurrent layer to output the paragraph state,

which is then used as the new initial state of the sentence

generator (see Section 3). Figure 2 illustrates our over-

all framework. We evaluate our approach on two public

datasets: YouTubeClips [6] and TACoS-MultiLevel [36].

We show that our approach significantly outperforms other

state-of-the-art methods. To our knowledge, this is the first

application of hierarchical RNN to video captioning task.

2. Related Work

Neural Machine Translation. The methods for NMT [18,

9, 1, 43, 27, 28] in computational linguistics generally fol-

low the encoder-decoder paradigm. An encoder maps the

source sentence to a fixed-length feature vector in the em-

bedding space. A decoder then conditions on this vector to

generate a translated sentence in the target language. On

top of this paradigm, several improvements were proposed.

Bahdanau et al. [1] proposed a soft attention model to do

alignment during translation, so that their approach is able

to focus on different parts of the source sentence when gen-

erating different translated words. Li et al. [27] and Lin

et al. [28] employed hierarchical RNN to model the hier-

archy of a document. Our approach is much similar to a

neural machine translator with a simplified attention model

and a hierarchical architecture.

Image captioning with RNNs. The first attempt of visual-

to-text translation using RNNs was seen in the work of im-

age captioning [29, 22, 19, 50, 8], which can be treated as

a special case of video captioning when each video has a

single frame and no temporal structure. As a result, image

4585

captioning only requires computing object appearance fea-

tures, but not action/motion features. The amount of data

handled by an image captioning method is much (dozens of

times) less than that handled by a video captioning method.

The overall structure of an image captioner (instance-to-

sequence) is also usually simpler than that of a video cap-

tioner (sequence-to-sequence). Some other methods, such

as Park and Kim [34], addressed the problem of retrieving

sentences from training database to describe a sequence of

images. They proposed a local coherence model for fluent

sentence transitions, which serves a similar purpose of our

paragraph generator.

Video captioning with RNNs. The very early video cap-

tioning method [48] based on RNNs extends the image

captioning methods by simply average pooling the video

frames. Then the problem becomes exactly the same as im-

age captioning. However, this strategy works only for short

video clips where there is only one major event, usually ap-

pearing in one video shot from the beginning to the end. To

avoid this issue, more sophisticated ways of encoding video

features were proposed in later work, using either a recur-

rent encoder [11, 47, 54] or an attention model [56]. Our

sentence generator is closely related to Yao et al. [56], in

that we also use attention mechanism to selectively focus on

video features. One difference between our framework and

theirs is that we additionally exploit spatial attention. The

other difference is that after weighing video features with

attention weights, we do not condition the hidden state of

our recurrent layer on the weighted features (Section 3.2).

3. Hierarchical RNN for Video Captioning

Our approach stacks a paragraph generator on top of a

sentence generator. The sentence generator is built upon

1) a Recurrent Neural Network (RNN) for language model-

ing, 2) a multimodal layer [29] for integrating information

from different sources, and 3) an attention model [56, 1] for

selectively focusing on the input video features. The para-

graph generator is simply another RNN which models the

inter-sentence dependency. It receives the compact senten-

tial representation encoded by the sentence generator, com-

bines it with the paragraph history, and outputs a new ini-

tial state for the sentence generator. The RNNs exploited

by the two generators incorporate the Gated Recurrent Unit

(GRU) [9] which is a simplification of the Long Short-Term

Memory (LSTM) architecture [16]. In the following, we

first briefly review the RNN with the GRU (or the gated

RNN), and then describe our framework in details.

3.1. Gated Recurrent Unit

A simple RNN [12] can be constructed by adding feed-

back connections to a feedforward network that consists of

three layers: the input layer x, the hidden layer h, and the

output layer y. The network is updated by both the input

and the previous recurrent hidden state as follows:

ht = φ
(
Whx

t +Uhh
t−1 + bh

)
(hidden state)

yt = φ (Uyh
t + by) (output)

where W,U and b are weight matrices and biases to be

learned, and φ(·) are element-wise activation functions.

While the simple RNN is able to model temporal de-

pendency for a small time gap, it usually fails to capture

long-term temporal information. To address this issue, the

GRU [9] is designed to adaptively remember and forget the

past. Inside the unit, the hidden state is modulated by non-

linear gates. Specifically, let ⊙ denote the element-wise

multiplication of two vectors, the GRU computes the hid-

den state h as:

rt = σ(Wrx
t +Urh

t−1 + br) (reset gate)

zt = σ(Wzx
t +Uzh

t−1 + bz) (update gate)

h̃t = φ
(
Whx

t +Uh(r
t ⊙ ht−1) + bh

)

ht = zt ⊙ ht−1 + (1− zt)⊙ h̃t (hidden state)

where σ(·) are element-wise Sigmoid functions. The reset

gate r determines whether the hidden state wants to drop

any information that will be irrelevant in the future. The

update gate z controls how much information from the pre-

vious hidden state will be preserved for the current state.

During the training of a gated RNN, the parameters can be

estimated by Backpropagation Through Time (BPTT) [53]

as in traditional RNN architectures.

3.2. Sentence Generator

The overall structure of our hierarchical RNN is illus-

trated in Figure 2. The sentence generator operates at every

time step when a one-hot input (1-of-N encoding, where N

is the vocabulary size) arrives at the embedding layer. The

embedding layer converts the one-hot vector to a dense rep-

resentation in a lower dimensional space by multiplying it

with an embedding table (512×N), of which each row is a

word embedding to be learned. The resulting word embed-

ding is then input to our first RNN, i.e., the recurrent layer

I. This gated recurrent layer has 512 dimensions and acts

similarly to those that are commonly employed by a vari-

ety of image/video captioning methods (e.g., [47, 29, 56]),

i.e., modeling the syntax of a language. It updates its hid-

den state every time a new word arrives, and encodes the

sentence semantics in a compact form up to the words that

have been fed in. We set the activation function φ of this

recurrent layer to be the Rectified Linear Unit (ReLU) [31],

since it performs better than non-linear activation functions

such as Sigmoid according to our observation.

As one branch, the output of the recurrent layer I is di-

rected to the attention layers to compute attention weights

for the features in the video feature pool. Our attention

model is inspired by the recent soft-alignment method that

4586

!"# !"#
$%&'()*+,-.

/012--3%4 526',,2%()$

7'890+-:8

;,2-36(2-)*+,-.
<3--2% =+>0:? 7:?$@

A:.()$%.(:%62

!"#

"B#C !"#

/012--3%4)
DE2,:42

526',,2%()$$

512
=2%(2%62))

/012--3%4) 512 ;:,:4,:&F)=(:(2

(a) Sentence Generator

(b) Paragraph Generator

G3-2+)H2:(',2);++8

DI2%9+%)$

*234F(2-)DE2,:42

)DI2%9+%)$$

=2J'2%9:8)=+>0:?

Figure 2. Our hierarchical RNN for video captioning. Green denotes the input to the framework, blue denotes the output, and red denotes

the recurrent components. The orange arrow represents the reinitialization of the sentence generator with the current paragraph state. For

simplicity, we only draw a single video feature pool in the figure. In fact, both appearance and action features go through a similar attention

process before they are fed into the multimodal layer.

has been successfully applied in the context of Neural Ma-

chine Translation (NMT) [1], and was later adapted to video

captioning by Yao et al. [56]. The difference between our

model and the one used by Yao et al. is that their model

only focuses on temporal attention. We additionally in-

clude spatial attention by computing features for multiple

image patches at different locations on a video frame and

pool the features together. This simple improvement is im-

portant when objects are small and difficult to be localized

on some datasets (e.g., TACoS-MultiLevel [36]). In this

case, whole-frame-based video features will fail to capture

the object information and multiple object proposals are

needed for good performance (see Section 5 for details). Let

the features in the pool be denoted as {v1,v2, . . . ,vKM},

where M is the video length and K is the number of patches

on each frame. We want to compute a set of weights

{βt
1, β

t
2, . . . , β

t
KM} for these features at each time step t

such that
∑KM

m=1
βt
m = 1. To do so, we first compute an

attention score qtm for each frame m, conditioning on the

previous hidden state ht−1:

qtm = w⊤φ(Wqvm +Uqh
t−1 + bq)

where w, Wq , Uq , and bq are the parameters shared

by all the features at all the time steps, and φ is set to

the element-wise Scaled Hyperbolic Tangent (stanh) func-

tion [25]: 1.7159 · tanh(2x
3
). The above computation is per-

formed by the attention layers I and II in Figure 2(a), where

the attention layer I projects the feature v and the hidden

state h into a lower dimensional space whose dimension

can range from 32 to 256. The attention layer II then fur-

ther compresses the activation of the projected vector into a

scalar, one for each feature. After this, we set up a sequen-

tial softmax layer to get the attention weights:

βt
m = exp

(
qtm

)/ KM∑

m′=1

exp
(
qtm′

)

Finally, a single feature vector is obtained by weighted av-

eraging: ut =
∑KM

m=1
βt
mvm. The above process is a so-

phisticated version of the temporal mean pooling. It allows

the sentence generator to selectively focus on a subset of the

features during generation. Note that while only one feature

channel is shown in Figure 2(a), our sentence generator in

fact pumps features of several channels through the same

attention process. Each feature channel has a different set

of weights and biases to be learned. In our experiments, we

employ two feature channels, one for object appearance and

the other for action/motion. (Section 5).

After the attention process, the weighted sums of the

video features are fed into the multimodal layer which has

1024 dimensions. The multimodal layer also receives the

output of the recurrent layer I, thus connecting the vision

component with the language model. Suppose we have two

video feature channels, of which the weighted features out-

put by the attention model are ut
o and ut

a respectively. The

multimodal layer maps the two features, together with the

hidden state ht of the recurrent layer I, into a 1024 dimen-

sional feature space and add them up:

mt = φ(Wm,ou
t
o +Wm,au

t
a +Umht + bm)

where φ is set to the element-wise stanh function. To reduce

overfitting, we add dropout [41] with a drop rate of 0.5 to

this layer.

The multimodal layer is followed by a hidden layer and

a softmax layer (see Figure 2(a)), both with the element-

wise stanh function as their activation functions. The hid-

den layer has exactly the same dimension 512 with the

4587

