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Abstract
Deep learning has dramatically improved the performance

of speech recognition systems through learning hierarchies of
features optimized for the task at hand. However, true end-to-
end learning, where features are learned directly from wave-
forms, has only recently reached the performance of hand-
tailored representations based on the Fourier transform. In this
paper, we detail an approach to use convolutional filters to push
past the inherent tradeoff of temporal and frequency resolution
that exists for spectral representations. At increased computa-
tional cost, we show that increasing temporal resolution via re-
duced stride and increasing frequency resolution via additional
filters delivers significant performance improvements. Further,
we find more efficient representations by simultaneously learn-
ing at multiple scales, leading to an overall decrease in word
error rate on a difficult internal speech test set by 20.7% rela-
tive to networks with the same number of parameters trained on
spectrograms.
Index Terms: Speech Recognition, Multiscale Learning, Con-
volutional Neural Networks, Raw Waveforms

1. Introduction
Raw speech waveforms are densely sampled in time, and thus
require downsampling to make many analysis techniques com-
putationally tractable. For speech recognition, this presents the
challenge to reduce the number of timesteps in the signal with-
out throwing away relevant information. Representations based
on the Fourier transform have proven effective at this task as
the transform forms a complete basis for signal reconstruction.
Deep learning’s recent success in speech recognition is based
on learning feature hierarchies atop these representations [1, 2].

There has been increasing focus on extending this end-to-
end learning approach down to the level of the raw waveform. A
popular approach is pass the waveform through strided convo-
lutions, or networks connected to local temporal frames, often
followed by a pooling step to create invariance to phase shifts
and further downsample the signal [3, 4, 5, 6, 7, 8]. While
some studies find inferior performance for convolutional filters
learned in this way, deeper networks have recently matched the
performance of hand-engineered features on large vocabulary
speech recognition tasks [4].

Features based on the Fourier transform are computation-
ally efficient, but exhibit an intrinsic tradeoff of temporal and
frequency resolution. Convolutional filters decouple time and
frequency resolution as the number of filters and stride are cho-
sen independently. Despite this, a filter bank is constrained by

its window size to a single scale. Herein, we explore jointly
learning filter banks at multiple different scales on raw wave-

Figure 1: Diagram of multiscale convolutions for learning directly
from waveforms. Sampled at 16kHz, the waveform is originally 1/16ms
per frame. Three convolutions with different window sizes and strides
are applied, leading to feature maps with High (1ms/frame), Mid
(5ms/frame), and Low (10ms/frame) temporal resolution. Next, max-
pooling and concatenation ensure a consistent sampling frequency
(20ms/frame) for the rest of the network. The diagram shows real fea-
ture maps that are extracted by applying learned features (also shown)
to a recording of one of the authors saying ”I like cats” in Mandarin.

forms. Multiscale convolutions have already been successfully
applied to address tasks in the computer vision field, such as im-
age classification [9], scene labeling [10], and gesture detection
[11]. These successful applications exploit structure at different
scales, which encourages us to explore multiscale representa-
tions for waveforms as well.

Further, multiscale convolutions enable us to split the spec-
trum into different filter banks with independent choice of
stride, window size, and number of filters. To learn high fre-
quency features, filters with a short window are applied at a
small stride on the waveforms. Low-frequency features, on the
contrary, employ a long window that can be applied at a larger
stride. Finally, based on the needs of the speech recognition
system we can then independently tune the number of filters for
the different frequency bands.

While much research has already been conducted on learn-
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Figure 2: Stride matters. For a single scale of convolution, WER
reduces with decreasing stride, passing the spectrogram baseline at
2ms stride. Smaller strides in convolution have larger strides in max-
pooling, keeping the 20ms/frame context constant. While more compu-
tationally efficient, larger strides correspond to sparsely subsampling
the data, and lose information compared with pooling.

ing directly from waveforms for speech recognition, the unique
contributions of this paper are threefold:

• We perform with an in-depth analysis of scaling to low
strides and large numbers of filters and discover that
a convolutional front end can significantly outperform
Fourier features by independently tuning temporal and
frequency resolution, at the cost of additional computa-
tion and memory.

• We propose a new multiscale convolutional front end,
composed of concatenated filters with different window
sizes, that requires less computation and outperforms
features learned on a single scale (20.7% relative to spec-
trogram baseline).

• We find that multiscale features naturally learn the fre-
quencies they can most efficiently represent, with large
and small windows learning low and high frequencies re-
spectively. This contrasts with the single scale features
which try to cover the entire frequency spectrum regard-
less of window size.

2. Experimental Setup
The experimental design of this study is modelled after our pre-
vious work on end-to-end speech recognition [12, 2]. However,
to decrease the experimental latency, we train on a reduced ver-
sion of the model and a subset of the training data. The ba-
sic architecture is shown in Table 1. While we vary the front
end processing, the backend remains the same: a convolutional
(through time) layer, followed by three bidirectional simple re-
current layers, and a fully connected layer. Batch normalization
[13], is employed between each layer, but not between indi-
vidual timesteps [2]. Rectified linear unit (ReLU) activation
functions are used for all layers, including between timesteps.
We use the Connectionist Temporal Classification (CTC) cost
function to integrate over all possible alignments between the
network outputs and characters of the English alphabet [14].

Training is conducted on 2,400 hours of audio randomly
sampled from 12,000 hours of data. The training data is drawn
from a diverse collection of sources including read, conversa-
tional, accented, and noisy speech [2]. At each epoch, 40% of
the utterances are randomly selected to have background noise

Connectionist Temporal Classification (CTC)
Fully Connected (1770)

...
3x Bidirectional Recurrent (1770)

...
1-D Convolution (1770, window 11, stride 1)

Max-Pooling (20ms/frame)
Waveform Convolution or Spectrogram (161)

Waveform

Table 1: Neural network architectures explored in this study. The
architecture is held constant except for the ”Waveform Convolution”
layer. The baseline (Spectrogram) is compared against different single
and multiscale convolutions.

Type Spectrogram / Convolution Pooling WER(%)# Features Window Stride Stride
FFT 161 20ms 10ms 2 28.10
wav 161 20ms 10ms 2 32.31
wav 161 20ms 5ms 4 29.35
wav 161 20ms 2ms 10 26.90
wav 161 20ms 1ms 20 26.35
wav 161 20ms 0.5ms 40 26.13

Table 2: Single scale waveform convolution outperforms the spectro-
gram baseline at low strides. The trend is visualized in Figure 2.

(superpositions of YouTube clips) added at signal-to-noise ra-
tios ranging from 0dB to 15dB [12]. All input data (either spec-
trogram or waveform) is sampled at 16kHz, and normalized so
that each input feature has zero mean and unit variance. For
models that learn directly from waveforms, no other preprocess-
ing is applied and the network inputs have 1 feature per 1/16ms
frame. For models that learn from spectrograms, linear FFT
features are extracted with a hop size of 10ms, and window size
of 20ms. The network inputs are thus spectral magnitude maps
ranging from 0-8kHz with 161 features per 10ms frame.

We train using stochastic gradient descent with Nesterov
momentum and a batch size of 128. Hyperparameters are tuned
for each model by optimizing a hold-out set. Typical values are
a learning rate of 3e-4 and momentum of 0.99, and training con-
verges after 20 epochs. Following [2], we sort the first epoch by
utterance length (SortaGrad), to promote stability of training on
long utterances. While the CTC-trained acoustic model learns
a rudimentary language model itself from the training data, for
testing, we supplement it with a Kneser-Ney smoothed 5-gram
model that is trained using the KenLM toolkit [15] on cleaned
text from the Common Crawl Repository. Decoding is done
via beam search, where a weighted combination of the acoustic
model and language model with an added word insert penalty
is used as the value function. Test set word error rates (WER)
are reported on a difficult in-house test set of 2048 utterances,
diversely composed of noisy, conversational, voice-command,
and accented speech. The test set is collected internally and
from industry partners and is not represented in the training
data.

As previously observed [2], deep neural networks trained
on sufficient data perform better as the model size grows. In
order to make fair comparisons, the number of parameters of the
models used in our experiments is held constant at 35M. We are
aware that the results are not directly comparable to literature
due to the use of proprietary datasets. However, we attempt
to tightly control our experiments rather than focus on overall
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Figure 3: Multiscale features naturally separate according to frequency. Plots of spectral centroid of the learned filters (sorted by frequency) when
scales are learned separately (blue) versus jointly (red). For quantitative comparison, the mean filter frequencies of each bank is also shown. In the
separate case, each filter bank tries to span the entire frequency range, with larger windows having more emphasis on low frequencies. Learned jointly,
the filter banks split responsibilities based on what they efficiently can represent, with smaller windows putting more emphasis on high frequencies and
larger windows dedicating more filters to low frequencies.

performance, with the aim that the conclusions will generalize
to other architectures and datasets as well. If optimizing for
performance, it is worth noting that the WER drops by ∼50%
when training on all 12,000 hours of data with 7 bidirectional
layers (70M parameters) in the backend.

3. Results
3.1. Decoupling temporal resolution

While many studies have compared convolution on raw wave-
forms to features such as spectrograms, MFCCs, and melscale
filterbanks, they often compare the two at a similar strides and
window sizes [5, 6]. Spectrograms can employ a high stride
because of the unique analytic structure of the basis functions.
Integrating twice, once over the real cosine and once over its
imaginary sine counterpart, identifies both the phase and mag-
nitude of the response. This is in many ways similar to perform-
ing a convolution over every timestep and max-pooling, with the
phase represented by the index at which the max occurs, but it
is much more computationally efficient to perform with an FFT.

We decided to test this hypothesis that a convolution with
low stride and pooling can find at least as good a basis as the
spectrogram. Figure 2 and Table 2 show the effects of replacing
the spectrogram with a single convolution and pooling layer of
the same number of filters and window size. For each decrease
in stride of the convolution, the stride of the pooling is increased
to give a consistent total stride of 20ms, which is the same as the
stride of the spectrogram with pooling. At comparable strides
to the spectrogram (10ms) the convolution is unable to perform
as well, likely due to needing to represent phase shifts as well
as frequency variation. However, as the stride dips below 2ms,
the convolution asymptotically reaches a superior level of per-
formance to the spectrogram. To be fair, this improved per-
formance comes at increased computational cost and memory
usage.

3.2. Multiscale features are more efficient

Representing high frequency information with a large filter is
difficult because of the many places the information can oc-
cur in the filter window. Similarly, representing low frequency
information with a small filter is challenging because separate
filters are required for separate parts of the wave. We hypothe-

# Features WER(%)High (1ms) Mid (4ms) Low (40ms)
161 0 0 32.84
0 161 0 27.69
0 0 161 26.54
61 50 50 25.67

Table 3: Multiscale vs. single scale features. Holding the number of
filters constant, single scale convolution with High frequency (1ms win-
dow, 1/4ms stride), Mid frequency (4ms, 1ms) or Low frequency (40ms,
10ms), are outperformed by a combination of all three (as diagrammed
in Figure 1).

sized that applying convolution simultaneously at several scales
could allow each scale to learn filters selective to the frequen-
cies that it can most efficiently represent. To test our hypothesis,
we compare the performance of convolutional front ends with a
constant number of filters at three different scales (High: (1ms
window, 1/4ms stride), Mid: (4ms, 1ms), and Low: (40ms,
10ms)), to a front end employing all three scales (Diagramed
in Figure 1.

Table 3 shows that WER significantly decreases from High
to Mid to Low frequency filter banks. The improved perfor-
mance of the lower frequency banks is evidence for the impor-
tance of low frequency vocalization features in speech recogni-
tion [4]. Figure 3 displays the spectral centroids of each filter
bank sorted by frequency, with the mean value printed along-
side. It is clear that the High (2800Hz), Mid (1700Hz), and Low
(940Hz) filter banks live up to their names, each learning filters
that capture different frequency bands. When we jointly learn
several scales, the filters exhibit a an heightened preference for
representing different bands. Relaxing the requirement of each
bank to cover the entire spectrum causes the High (3500Hz)
banks to increase in mean frequency, and the Mid (1300Hz)
and Low (480Hz) banks to decrease. Further, the WER is low-
est for the multiscale features, despite the fact that it has fewer
parameters and three times less large filters.

3.3. Decoupling frequency resolution

With methods based on the Fourier transform, there is an in-
trinsic tradeoff of temporal and frequency resolution. As the
number of basis functions increases, helping identify which fre-
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Figure 4: Representative learned multiscale filters. There is a clear preference for Fourier-like and wavelet representations, with varying degrees of
high frequency noise. Some filters also show a combination of frequencies and localized transient structure. Phase shifted filter pairs are also found,
suggesting the importance of phase information in speech recognition tasks.

# Features WER(%)High (1ms) Mid (4ms) Low (40ms)
61 50 50 25.67
161 161 161 23.78
160 320 640 23.52
160 320 640 23.28∗

Table 4: Decoupling time and frequency resolution. Window size
shown in parentheses. Adding additional filters at the same stride
(1/4ms, 1ms, 10ms) significantly improves performance. All models
have an additional bottleneck layer (Fully Connected, 161) inserted
after pooling to maintain the same number of features as previous ex-
periments. ∗Increasing the bottleneck layer from 161 to 800 leads to a
small improvement.

quencies are present, so does the window size, which smears
knowledge of when they occur. Decreasing the stride cannot in-
crease temporal resolution, it can only provide more samples of
the smeared signal. Convolutions do not suffer from this same
tradeoff, as the frequency resolution is limited by the number
of filters and temporal resolution by the stride, both of which
are independent. This advantage comes at the added cost of in-
creased computation and memory, both by increasing number
of filters or decreasing stride.

We explore the value of increased frequency resolution by
performing the same multiscale experiments as the previous
section, but increasing the number of filters. Table 4 demon-
strates that increasing the number of filters, even by a factor
of 3, leads to a significant (8% relative) improvement in WER.
A fully-connected layer with output dimension of 161 is added
above the concatenated feature maps in order to produce the
same number of features as the previous experiments. Since us-
ing more filters at short strides is more costly in terms of both
computation and memory, we specifically increase the number
of filters at long strides. Further increasing the number of fil-
ters, and expanding the size of the bottle neck leads to smaller
gains. showing an impressive 20.7% cumulative improvement
in WER relative to the spectrogram baseline.

4. Discussion
In this paper, we have consistently demonstrated that learning
features directly from waveforms can outperform spectrograms,
especially when applied at multiple scales. However, several in-
teresting research questions remain to be answered before such
techniques likely see widespread adoption.

Learning convolutional filters overcomes the
time/frequency tradeoff of Fourier representations, but
with considerable computational and memory cost. Many
modern state of the art systems train on clusters of GPUs,
where memory is precious, as requiring memory transfer
between GPU and CPU can be prohibitively slow for training.
This is especially problematic for training on long utterances,
where the amount of memory required to save all the ac-
tivations increases both with the number of filters and the
reduction of stride. It remains to be seen whether the power of
learned input features can be combined with the efficiency of
analytic signal transformations such as the Fourier transform.
One such approach could be to learn basis functions in the
real and imaginary domain by performing backpropagation
through the Hilbert transformation, enabling the use of larger
strides. Alternatively, learned features can be fixed and used to
augment other fixed features at train time. Sainath et al. [4]
found noticeable improvements from supplementing log-mel
filterbanks in such a manner.

While learned features outperformed spectrograms feeding
into temporal convolution in this study, many state of the art sys-
tems apply two-dimensional convolutions to their inputs [2, 16].
Our learned features underperform in this context, which is un-
derstandable as they are not spectrally ordered, and lack spatial
structure. Regularization techniques such as [17] could perhaps
be key to learning ordered filter maps with useful structure.

In our experiments, we made sure to downsample each
scale equally with appropriate stride such that the signals can
be concatenated for the later recurrent layers. This temporal
pooling only takes into account local structure and has no ex-
plicit knowledge of what information to preserve based on long-
range dependencies. Recently proposed architectures that oper-
ate simultaneously at different timescales, such as the Clock-
work RNN [18], could provide a more elegant way of combin-
ing multiscale signals. Beyond incorporating recurrence, low
frequency features that require fewer temporal samples could
then also require less recurrent computation and facilitate mod-
eling long-range structure.

Finally, from observing representative filters learned at each
scale in Figure 4, we can see that there is some redundancy in
the representation. Some filter shapes appear similar at multiple
scales. An interesting future direction could be to investigate
learning features in a scale-free basis, similar to wavelets, where
a reduced basis set could be applied across a range of scales.
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